Finite rank operators in Jacobson radical
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 2, page 287-298
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topDong, Zhe. "Finite rank operators in Jacobson radical ${\mathcal {R}}_{{\mathcal {N}}\otimes {\mathcal {M}}}$." Czechoslovak Mathematical Journal 56.2 (2006): 287-298. <http://eudml.org/doc/31029>.
@article{Dong2006,
abstract = {In this paper we investigate finite rank operators in the Jacobson radical $\mathcal \{R\}_\{\mathcal \{N\}\otimes \mathcal \{M\}\}$ of $\mathop \{\mathrm \{A\}lg\}(\mathcal \{N\}\otimes \mathcal \{M\})$, where $\mathcal \{N\}$, $\mathcal \{M\}$ are nests. Based on the concrete characterizations of rank one operators in $\mathop \{\mathrm \{A\}lg\}(\mathcal \{N\}\otimes \mathcal \{M\})$ and $\mathcal \{R\}_\{\mathcal \{N\}\otimes \mathcal \{M\}\}$, we obtain that each finite rank operator in $\mathcal \{R\}_\{\mathcal \{N\}\otimes \mathcal \{M\}\}$ can be written as a finite sum of rank one operators in $\mathcal \{R\}_\{\mathcal \{N\}\otimes \mathcal \{M\}\}$ and the weak closure of $\mathcal \{R\}_\{\mathcal \{N\}\otimes \mathcal \{M\}\}$ equals $\mathop \{\mathrm \{A\}lg\}(\{\mathcal \{N\}\otimes \mathcal \{M\}\})$ if and only if at least one of $\mathcal \{N\}$, $\mathcal \{M\}$ is continuous.},
author = {Dong, Zhe},
journal = {Czechoslovak Mathematical Journal},
keywords = {Jacobson radical; finite rank operator; Jacobson radical; finite rank operator},
language = {eng},
number = {2},
pages = {287-298},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Finite rank operators in Jacobson radical $\{\mathcal \{R\}\}_\{\{\mathcal \{N\}\}\otimes \{\mathcal \{M\}\}\}$},
url = {http://eudml.org/doc/31029},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Dong, Zhe
TI - Finite rank operators in Jacobson radical ${\mathcal {R}}_{{\mathcal {N}}\otimes {\mathcal {M}}}$
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 287
EP - 298
AB - In this paper we investigate finite rank operators in the Jacobson radical $\mathcal {R}_{\mathcal {N}\otimes \mathcal {M}}$ of $\mathop {\mathrm {A}lg}(\mathcal {N}\otimes \mathcal {M})$, where $\mathcal {N}$, $\mathcal {M}$ are nests. Based on the concrete characterizations of rank one operators in $\mathop {\mathrm {A}lg}(\mathcal {N}\otimes \mathcal {M})$ and $\mathcal {R}_{\mathcal {N}\otimes \mathcal {M}}$, we obtain that each finite rank operator in $\mathcal {R}_{\mathcal {N}\otimes \mathcal {M}}$ can be written as a finite sum of rank one operators in $\mathcal {R}_{\mathcal {N}\otimes \mathcal {M}}$ and the weak closure of $\mathcal {R}_{\mathcal {N}\otimes \mathcal {M}}$ equals $\mathop {\mathrm {A}lg}({\mathcal {N}\otimes \mathcal {M}})$ if and only if at least one of $\mathcal {N}$, $\mathcal {M}$ is continuous.
LA - eng
KW - Jacobson radical; finite rank operator; Jacobson radical; finite rank operator
UR - http://eudml.org/doc/31029
ER -
References
top- 10.1090/S0002-9947-1994-1250816-9, Trans. Amer. Math. Soc. 344 (1994), 925–947. (1994) MR1250816DOI10.1090/S0002-9947-1994-1250816-9
- On finite rank operators in nest algebras, J. London Math. Soc. 43 (1968), 391–397. (1968) MR0230156
- Reflexive algebras with finite width lattices: tensor products, cohomology, compact perturbation, J. Funct. Anal. 55 (1984), 176–199. (1984) MR0733915
- 10.2140/pjm.1976.65.375, Pacific J. Math. 65 (1976), 375–392. (1976) MR0440383DOI10.2140/pjm.1976.65.375
- Finite rank operators in reflexive operator algebras, J. London Math. Soc. 27 (1983), 331–338. (1983) MR0692538
- 10.1090/S0002-9939-1983-0712641-2, Proc. Amer. Math. Soc. 89 (1983), 293–297. (1983) MR0712641DOI10.1090/S0002-9939-1983-0712641-2
- Strongly reflexive lattices, J. London Math. Soc. 11 (1975), 491–498. (1975) Zbl0313.47002MR0394233
- Operators of rank one in reflexive algebras, Canadian J. Math. 28 (1976), 19–23. (1976) Zbl0317.46052MR0397435
- On some algebras of operators, Proc. London Math. Soc. 15 (1965), 61–83. (1965) Zbl0135.16804MR0171174
- On some algebras of operators II, Proc. London Math. Soc. 15 (1965), 61–83. (1965) MR0171174
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.