Indecomposable matrices over a distributive lattice
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 2, page 299-316
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topTan, Yi Jia. "Indecomposable matrices over a distributive lattice." Czechoslovak Mathematical Journal 56.2 (2006): 299-316. <http://eudml.org/doc/31030>.
@article{Tan2006,
abstract = {In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice $L$ are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set $F_n(L)$ of all $n\times n$ fully indecomposable matrices as a subsemigroup of the semigroup $H_n(L)$ of all $n\times n$ Hall matrices over the lattice $L$ are given.},
author = {Tan, Yi Jia},
journal = {Czechoslovak Mathematical Journal},
keywords = {distributive lattice; indecomposable matrix; fully indecomposable matrix; semigroup; characterization; distributive lattice; indecomposable matrix; fully indecomposable matrix; semigroup; characterization},
language = {eng},
number = {2},
pages = {299-316},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Indecomposable matrices over a distributive lattice},
url = {http://eudml.org/doc/31030},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Tan, Yi Jia
TI - Indecomposable matrices over a distributive lattice
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 299
EP - 316
AB - In this paper, the concepts of indecomposable matrices and fully indecomposable matrices over a distributive lattice $L$ are introduced, and some algebraic properties of them are obtained. Also, some characterizations of the set $F_n(L)$ of all $n\times n$ fully indecomposable matrices as a subsemigroup of the semigroup $H_n(L)$ of all $n\times n$ Hall matrices over the lattice $L$ are given.
LA - eng
KW - distributive lattice; indecomposable matrix; fully indecomposable matrix; semigroup; characterization; distributive lattice; indecomposable matrix; fully indecomposable matrix; semigroup; characterization
UR - http://eudml.org/doc/31030
ER -
References
top- Über Matrizen aus nichtnegativen Elementen, Sitzb. d. Preuss, Akad. d. Wiss. (1912), 456–477. (1912)
- 10.1215/ijm/1255637488, Illinois J. Math. 7 (1963), 137–147. (1963) MR0142473DOI10.1215/ijm/1255637488
- The semigroup of fully indecomposable relations and Hall relations, Czechoslovak Math. J. 23 (1973), 151–163. (1973) Zbl0261.20057MR0316612
- On a conjecture of the semigroup of fully indecomposable relations, Czechoslovak Math. J. 27 (1977), 591–597. (1977) Zbl0384.20051MR0450067
- On the semigroup of fully indecomposable relations, Czechoslovak Math. J. 33 (1983), 314–319. (1983) MR0699029
- 10.1016/0024-3795(87)90149-2, Linear Algebra Appl. 97 (1987), 185–210. (1987) MR0916791DOI10.1016/0024-3795(87)90149-2
- 10.1080/03081088808817840, Linear and Multilinear Algebra 22 (1988), 285–303. (1988) Zbl0637.15013MR0937171DOI10.1080/03081088808817840
- 10.1090/S0002-9939-1991-1065941-8, Proc. Amer. Math. Soc. 112 (1991), 1193–1202. (1991) MR1065941DOI10.1090/S0002-9939-1991-1065941-8
- The index set of convergence of irreducible Boolean matrices, J. Math. Res. Exposition 12 (1992), 441–447. (Chinese) (1992) MR1191081
- On the indices of convergence of irreducible and nearly reducible Boolean matrices, Acta Math. Appl. Sinica 15 (1992), 333–344. (Chinese) (1992) Zbl0762.05028MR1326871
- 10.1007/PL00006027, Semigroup Forum 61 (2000), 303–314. (2000) MR1832190DOI10.1007/PL00006027
- Primitive lattice matrices, Southeast Asian Bull. Math. (to appear). (to appear) Zbl1057.15021MR1812689
- On compositions of lattice matrices, Fuzzy Sets and Systems 129 (2002), 19–28. (2002) Zbl1014.15011MR1907992
- 10.1016/S0019-9958(64)90173-1, Information and Control 7 (1964), 477–484. (1964) MR0182512DOI10.1016/S0019-9958(64)90173-1
- Boolean Matrix Theory and Applications, Marcel Dekker, New York, 1982. (1982) Zbl0495.15003MR0655414
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.