Regular submodules of torsion modules over a discrete valuation domain
Pudji Astuti; Harald K. Wimmer
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 2, page 349-357
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topAstuti, Pudji, and Wimmer, Harald K.. "Regular submodules of torsion modules over a discrete valuation domain." Czechoslovak Mathematical Journal 56.2 (2006): 349-357. <http://eudml.org/doc/31033>.
@article{Astuti2006,
abstract = {A submodule $W$ of a $p$-primary module $M$ of bounded order is known to be regular if $W$ and $M$ have simultaneous bases. In this paper we derive necessary and sufficient conditions for regularity of a submodule.},
author = {Astuti, Pudji, Wimmer, Harald K.},
journal = {Czechoslovak Mathematical Journal},
keywords = {regular submodules; modules over discrete valuation domains; Abelian $p$-groups; simultaneous bases; regular submodules; modules over discrete valuation domains; Abelian -groups; simultaneous bases},
language = {eng},
number = {2},
pages = {349-357},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regular submodules of torsion modules over a discrete valuation domain},
url = {http://eudml.org/doc/31033},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Astuti, Pudji
AU - Wimmer, Harald K.
TI - Regular submodules of torsion modules over a discrete valuation domain
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 349
EP - 357
AB - A submodule $W$ of a $p$-primary module $M$ of bounded order is known to be regular if $W$ and $M$ have simultaneous bases. In this paper we derive necessary and sufficient conditions for regularity of a submodule.
LA - eng
KW - regular submodules; modules over discrete valuation domains; Abelian $p$-groups; simultaneous bases; regular submodules; modules over discrete valuation domains; Abelian -groups; simultaneous bases
UR - http://eudml.org/doc/31033
ER -
References
top- Types of elements and the characteristic subgroups of Abelian groups, Proc. London Math. Soc. 39 (1935), 481–514. (1935)
- 10.1016/0024-3795(94)00107-3, Linear Algebra Appl. 235 (1996), 15–34. (1996) MR1374248DOI10.1016/0024-3795(94)00107-3
- Infinite Abelian Groups, Vol. I, Academic Press, New York, 1973. (1973) MR0349869
- Infinite Abelian Groups, Vol. II, Academic Press, New York, 1973. (1973) Zbl0257.20035MR0349869
- Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954. (1954) MR0065561
- Direct decompositions of topological groups, I, Mat. Sbornik N. S. 19 (1946), 85–154. (Russian) (1946) MR0017283
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.