Regular submodules of torsion modules over a discrete valuation domain

Pudji Astuti; Harald K. Wimmer

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 2, page 349-357
  • ISSN: 0011-4642

Abstract

top
A submodule W of a p -primary module M of bounded order is known to be regular if W and M have simultaneous bases. In this paper we derive necessary and sufficient conditions for regularity of a submodule.

How to cite

top

Astuti, Pudji, and Wimmer, Harald K.. "Regular submodules of torsion modules over a discrete valuation domain." Czechoslovak Mathematical Journal 56.2 (2006): 349-357. <http://eudml.org/doc/31033>.

@article{Astuti2006,
abstract = {A submodule $W$ of a $p$-primary module $M$ of bounded order is known to be regular if $W$ and $M$ have simultaneous bases. In this paper we derive necessary and sufficient conditions for regularity of a submodule.},
author = {Astuti, Pudji, Wimmer, Harald K.},
journal = {Czechoslovak Mathematical Journal},
keywords = {regular submodules; modules over discrete valuation domains; Abelian $p$-groups; simultaneous bases; regular submodules; modules over discrete valuation domains; Abelian -groups; simultaneous bases},
language = {eng},
number = {2},
pages = {349-357},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Regular submodules of torsion modules over a discrete valuation domain},
url = {http://eudml.org/doc/31033},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Astuti, Pudji
AU - Wimmer, Harald K.
TI - Regular submodules of torsion modules over a discrete valuation domain
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 349
EP - 357
AB - A submodule $W$ of a $p$-primary module $M$ of bounded order is known to be regular if $W$ and $M$ have simultaneous bases. In this paper we derive necessary and sufficient conditions for regularity of a submodule.
LA - eng
KW - regular submodules; modules over discrete valuation domains; Abelian $p$-groups; simultaneous bases; regular submodules; modules over discrete valuation domains; Abelian -groups; simultaneous bases
UR - http://eudml.org/doc/31033
ER -

References

top
  1. Types of elements and the characteristic subgroups of Abelian groups, Proc. London Math. Soc. 39 (1935), 481–514. (1935) 
  2. 10.1016/0024-3795(94)00107-3, Linear Algebra Appl. 235 (1996), 15–34. (1996) MR1374248DOI10.1016/0024-3795(94)00107-3
  3. Infinite Abelian Groups, Vol.  I, Academic Press, New York, 1973. (1973) MR0349869
  4. Infinite Abelian Groups, Vol.  II, Academic Press, New York, 1973. (1973) Zbl0257.20035MR0349869
  5. Infinite Abelian Groups, University of Michigan Press, Ann Arbor, 1954. (1954) MR0065561
  6. Direct decompositions of topological groups,  I, Mat. Sbornik N. S. 19 (1946), 85–154. (Russian) (1946) MR0017283

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.