Estimates of global dimension

Wei Jiaqun

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 2, page 773-780
  • ISSN: 0011-4642

Abstract

top
In this note we show that for a * n -module, in particular, an almost n -tilting module, P over a ring R with A = E n d R P such that P A has finite flat dimension, the upper bound of the global dimension of A can be estimated by the global dimension of R and hence generalize the corresponding results in tilting theory and the ones in the theory of * -modules. As an application, we show that for a finitely generated projective module over a VN regular ring R , the global dimension of its endomorphism ring is not more than the global dimension of R .

How to cite

top

Jiaqun, Wei. "Estimates of global dimension." Czechoslovak Mathematical Journal 56.2 (2006): 773-780. <http://eudml.org/doc/31066>.

@article{Jiaqun2006,
abstract = {In this note we show that for a $\ast ^\{n\}$-module, in particular, an almost $n$-tilting module, $P$ over a ring $R$ with $A=\mathop \{\mathrm \{E\}nd\}_\{R\}P$ such that $P_A$ has finite flat dimension, the upper bound of the global dimension of $A$ can be estimated by the global dimension of $R$ and hence generalize the corresponding results in tilting theory and the ones in the theory of $\ast $-modules. As an application, we show that for a finitely generated projective module over a VN regular ring $R$, the global dimension of its endomorphism ring is not more than the global dimension of $R$.},
author = {Jiaqun, Wei},
journal = {Czechoslovak Mathematical Journal},
keywords = {global dimension; $\ast $-module; global dimension; -modules; selforthogonal modules; -modules; tilting modules; star-modules; homological dimensions; selfsmall modules; endomorphism rings; flat dimension},
language = {eng},
number = {2},
pages = {773-780},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Estimates of global dimension},
url = {http://eudml.org/doc/31066},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Jiaqun, Wei
TI - Estimates of global dimension
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 773
EP - 780
AB - In this note we show that for a $\ast ^{n}$-module, in particular, an almost $n$-tilting module, $P$ over a ring $R$ with $A=\mathop {\mathrm {E}nd}_{R}P$ such that $P_A$ has finite flat dimension, the upper bound of the global dimension of $A$ can be estimated by the global dimension of $R$ and hence generalize the corresponding results in tilting theory and the ones in the theory of $\ast $-modules. As an application, we show that for a finitely generated projective module over a VN regular ring $R$, the global dimension of its endomorphism ring is not more than the global dimension of $R$.
LA - eng
KW - global dimension; $\ast $-module; global dimension; -modules; selforthogonal modules; -modules; tilting modules; star-modules; homological dimensions; selfsmall modules; endomorphism rings; flat dimension
UR - http://eudml.org/doc/31066
ER -

References

top
  1. 10.1080/00927879008824002, Commun. Algebra 18 (1990), 1935–1951. (1990) Zbl0708.16002MR1071082DOI10.1080/00927879008824002
  2. 10.1080/00927879308824612, Commun. Algebra 21 (1993), 1095–1102. (1993) MR1209922DOI10.1080/00927879308824612
  3. 10.1006/jabr.1993.1138, J. Algebra 158 (1993), 400–419. (1993) MR1226797DOI10.1006/jabr.1993.1138
  4. 10.1080/00927879408825060, Commun. Algebra 22 (1994), 3985–3995. (1994) MR1280103DOI10.1080/00927879408825060
  5. 10.1080/00927879708826026, Commun. Algebra 25 (1997), 2839–2860. (1997) MR1458733DOI10.1080/00927879708826026
  6. 10.2307/1970252, Ann. Math. 68 (1958), 372–377. (1958) Zbl0083.25802MR0100017DOI10.2307/1970252
  7. 10.1007/BF01163359, Math. Zeit. 193 (1986), 113–146. (1986) Zbl0578.16015MR0852914DOI10.1007/BF01163359
  8. Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova 82 (1989), 203–231. (1989) MR1049594
  9. Fuller’s Theorem on equivalences, J.  Algebra 52 (1978), 174–184. (1978) Zbl0374.16024MR0485993
  10. 10.1006/jabr.1996.7005, J.  Algebra 193 (1997), 660–676. (1997) Zbl0884.16005MR1458808DOI10.1006/jabr.1996.7005
  11. 10.1006/jabr.1994.1291, J.  Algebra 169 (1994), 392–398. (1994) DOI10.1006/jabr.1994.1291
  12. 10.1016/j.jalgebra.2005.05.019, J. Algebra 291 (2005), 238–249. (2005) MR2158520DOI10.1016/j.jalgebra.2005.05.019
  13. ( n , t ) -quasi-projective and equivalences, Commun. Algebra (to appear). (to appear) Zbl1107.16012MR2184002
  14. 10.1016/S0021-8693(03)00143-1, J.  Algebra 268 (2003), 404–418. (2003) MR2009316DOI10.1016/S0021-8693(03)00143-1
  15. 10.2140/pjm.1975.61.587, Pacific J.  Math. 61 (1975), 587–602. (1975) MR0404322DOI10.2140/pjm.1975.61.587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.