Estimates of global dimension
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 2, page 773-780
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topJiaqun, Wei. "Estimates of global dimension." Czechoslovak Mathematical Journal 56.2 (2006): 773-780. <http://eudml.org/doc/31066>.
@article{Jiaqun2006,
abstract = {In this note we show that for a $\ast ^\{n\}$-module, in particular, an almost $n$-tilting module, $P$ over a ring $R$ with $A=\mathop \{\mathrm \{E\}nd\}_\{R\}P$ such that $P_A$ has finite flat dimension, the upper bound of the global dimension of $A$ can be estimated by the global dimension of $R$ and hence generalize the corresponding results in tilting theory and the ones in the theory of $\ast $-modules. As an application, we show that for a finitely generated projective module over a VN regular ring $R$, the global dimension of its endomorphism ring is not more than the global dimension of $R$.},
author = {Jiaqun, Wei},
journal = {Czechoslovak Mathematical Journal},
keywords = {global dimension; $\ast $-module; global dimension; -modules; selforthogonal modules; -modules; tilting modules; star-modules; homological dimensions; selfsmall modules; endomorphism rings; flat dimension},
language = {eng},
number = {2},
pages = {773-780},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Estimates of global dimension},
url = {http://eudml.org/doc/31066},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Jiaqun, Wei
TI - Estimates of global dimension
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 2
SP - 773
EP - 780
AB - In this note we show that for a $\ast ^{n}$-module, in particular, an almost $n$-tilting module, $P$ over a ring $R$ with $A=\mathop {\mathrm {E}nd}_{R}P$ such that $P_A$ has finite flat dimension, the upper bound of the global dimension of $A$ can be estimated by the global dimension of $R$ and hence generalize the corresponding results in tilting theory and the ones in the theory of $\ast $-modules. As an application, we show that for a finitely generated projective module over a VN regular ring $R$, the global dimension of its endomorphism ring is not more than the global dimension of $R$.
LA - eng
KW - global dimension; $\ast $-module; global dimension; -modules; selforthogonal modules; -modules; tilting modules; star-modules; homological dimensions; selfsmall modules; endomorphism rings; flat dimension
UR - http://eudml.org/doc/31066
ER -
References
top- 10.1080/00927879008824002, Commun. Algebra 18 (1990), 1935–1951. (1990) Zbl0708.16002MR1071082DOI10.1080/00927879008824002
- 10.1080/00927879308824612, Commun. Algebra 21 (1993), 1095–1102. (1993) MR1209922DOI10.1080/00927879308824612
- 10.1006/jabr.1993.1138, J. Algebra 158 (1993), 400–419. (1993) MR1226797DOI10.1006/jabr.1993.1138
- 10.1080/00927879408825060, Commun. Algebra 22 (1994), 3985–3995. (1994) MR1280103DOI10.1080/00927879408825060
- 10.1080/00927879708826026, Commun. Algebra 25 (1997), 2839–2860. (1997) MR1458733DOI10.1080/00927879708826026
- 10.2307/1970252, Ann. Math. 68 (1958), 372–377. (1958) Zbl0083.25802MR0100017DOI10.2307/1970252
- 10.1007/BF01163359, Math. Zeit. 193 (1986), 113–146. (1986) Zbl0578.16015MR0852914DOI10.1007/BF01163359
- Representable equivalences between categories of modules and applications, Rend. Sem. Mat. Univ. Padova 82 (1989), 203–231. (1989) MR1049594
- Fuller’s Theorem on equivalences, J. Algebra 52 (1978), 174–184. (1978) Zbl0374.16024MR0485993
- 10.1006/jabr.1996.7005, J. Algebra 193 (1997), 660–676. (1997) Zbl0884.16005MR1458808DOI10.1006/jabr.1996.7005
- 10.1006/jabr.1994.1291, J. Algebra 169 (1994), 392–398. (1994) DOI10.1006/jabr.1994.1291
- 10.1016/j.jalgebra.2005.05.019, J. Algebra 291 (2005), 238–249. (2005) MR2158520DOI10.1016/j.jalgebra.2005.05.019
- -quasi-projective and equivalences, Commun. Algebra (to appear). (to appear) Zbl1107.16012MR2184002
- 10.1016/S0021-8693(03)00143-1, J. Algebra 268 (2003), 404–418. (2003) MR2009316DOI10.1016/S0021-8693(03)00143-1
- 10.2140/pjm.1975.61.587, Pacific J. Math. 61 (1975), 587–602. (1975) MR0404322DOI10.2140/pjm.1975.61.587
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.