Traceless component of the conformal curvature tensor in Kähler manifold

Shoichi Funabashi; Hyang Sook Kim; Y.-M. Kim; Jin Suk Pak

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 3, page 857-874
  • ISSN: 0011-4642

Abstract

top
We investigate the traceless component of the conformal curvature tensor defined by (2.1) in Kähler manifolds of dimension 4 , and show that the traceless component is invariant under concircular change. In particular, we determine Kähler manifolds with vanishing traceless component and improve some theorems (for example, [4, pp. 313–317]) concerning the conformal curvature tensor and the spectrum of the Laplacian acting on p ( 0 p 2 ) -forms on the manifold by using the traceless component.

How to cite

top

Funabashi, Shoichi, et al. "Traceless component of the conformal curvature tensor in Kähler manifold." Czechoslovak Mathematical Journal 56.3 (2006): 857-874. <http://eudml.org/doc/31072>.

@article{Funabashi2006,
abstract = {We investigate the traceless component of the conformal curvature tensor defined by (2.1) in Kähler manifolds of dimension $\ge 4$, and show that the traceless component is invariant under concircular change. In particular, we determine Kähler manifolds with vanishing traceless component and improve some theorems (for example, [4, pp. 313–317]) concerning the conformal curvature tensor and the spectrum of the Laplacian acting on $p$$(0\le p\le 2)$-forms on the manifold by using the traceless component.},
author = {Funabashi, Shoichi, Kim, Hyang Sook, Kim, Y.-M., Pak, Jin Suk},
journal = {Czechoslovak Mathematical Journal},
keywords = {Kähler manifold; conformal tensor field; trace decomposition; concircular transformation; spectrum; Kähler manifold; conformal tensor field; trace decomposition; concircular transformation; spectrum},
language = {eng},
number = {3},
pages = {857-874},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Traceless component of the conformal curvature tensor in Kähler manifold},
url = {http://eudml.org/doc/31072},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Funabashi, Shoichi
AU - Kim, Hyang Sook
AU - Kim, Y.-M.
AU - Pak, Jin Suk
TI - Traceless component of the conformal curvature tensor in Kähler manifold
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 857
EP - 874
AB - We investigate the traceless component of the conformal curvature tensor defined by (2.1) in Kähler manifolds of dimension $\ge 4$, and show that the traceless component is invariant under concircular change. In particular, we determine Kähler manifolds with vanishing traceless component and improve some theorems (for example, [4, pp. 313–317]) concerning the conformal curvature tensor and the spectrum of the Laplacian acting on $p$$(0\le p\le 2)$-forms on the manifold by using the traceless component.
LA - eng
KW - Kähler manifold; conformal tensor field; trace decomposition; concircular transformation; spectrum; Kähler manifold; conformal tensor field; trace decomposition; concircular transformation; spectrum
UR - http://eudml.org/doc/31072
ER -

References

top
  1. Le Spectre d’une Variété Riemannienne, Lecture Notes in Mathematics 194, Springer-Verlag, , 1971. (1971) MR0282313
  2. A conformal curvature tensor field on hermitian manifolds; Appendium, J. Korean Math. Soc.; Bull. Korean Math. Soc. 27 (1990), 7–17; 27–30. (1990) MR1061071
  3. The trace decomposition problem, Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry 36 (1995), 303–315. (1995) Zbl0839.15024MR1358429
  4. Conformal curvature tensor field and spectrum of the Laplacian in Kaehlerian manifolds, Bull. Korean Math. Soc. 32 (1995), 309–319. (1995) MR1356087
  5. Curvature and the fundamental solution of the heat operator, J. Indian Math. Soc. 34 (1970), 269–285. (1970) MR0488181
  6. Riemannian Geometry, Asakura Shoten, Tokyo, 1967. (Japanese) (1967) 
  7. 10.2748/tmj/1178241341, Tôhoku Math. J. 25 (1973), 391–403. (1973) Zbl0266.53033MR0334086DOI10.2748/tmj/1178241341
  8. On the spectrum of the Laplace operator for the exterior 2-forms, Tensor N. S. 33 (1979), 94–96. (1979) Zbl0408.53026MR0577217
  9. Eigenvalues of the Laplacian of Sasakian manifolds, TRU Math. 15 (1979), 31–41. (1979) MR0564366
  10. Differential Geometry on complex and almost complex spaces, Pergamon Press, New York, 1965. (1965) Zbl0127.12405MR0187181
  11. 10.14492/hokmj/1381758810, Hokkaido Math. J. 3 (1974), 297–304. (1974) MR0362170DOI10.14492/hokmj/1381758810

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.