Pták's characterization of reflexivity in tensor products

Kamil John

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 3, page 923-931
  • ISSN: 0011-4642

Abstract

top
We characterize the reflexivity of the completed projective tensor products X ˜ π Y of Banach spaces in terms of certain approximative biorthogonal systems.

How to cite

top

John, Kamil. "Pták's characterization of reflexivity in tensor products." Czechoslovak Mathematical Journal 56.3 (2006): 923-931. <http://eudml.org/doc/31078>.

@article{John2006,
abstract = {We characterize the reflexivity of the completed projective tensor products $X\{\widetilde\{\otimes \}_\pi \} Y$ of Banach spaces in terms of certain approximative biorthogonal systems.},
author = {John, Kamil},
journal = {Czechoslovak Mathematical Journal},
keywords = {reflexive Banach space; biorthogonal system; $\pi $-tensor product; reflexive Banach space; biorthogonal system; -tensor product},
language = {eng},
number = {3},
pages = {923-931},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Pták's characterization of reflexivity in tensor products},
url = {http://eudml.org/doc/31078},
volume = {56},
year = {2006},
}

TY - JOUR
AU - John, Kamil
TI - Pták's characterization of reflexivity in tensor products
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 923
EP - 931
AB - We characterize the reflexivity of the completed projective tensor products $X{\widetilde{\otimes }_\pi } Y$ of Banach spaces in terms of certain approximative biorthogonal systems.
LA - eng
KW - reflexive Banach space; biorthogonal system; $\pi $-tensor product; reflexive Banach space; biorthogonal system; -tensor product
UR - http://eudml.org/doc/31078
ER -

References

top
  1. Sequences and Series in Banach Spaces, Springer-Verlag, Berlin-Heidelberg-New York, 1984. (1984) MR0737004
  2. Produits tensoriels topologiques et espaces nucléaires, Mem. Am. Math. Soc. 16 (1955). (1955) Zbl0123.30301MR0075539
  3. On the reflexivity of the Banach space  L ( X , Y ) , Funkcional’nyi Analiz i ego Prilozheniya 8 (1974), 97–98. (1974) MR0342991
  4. Reflexivity of  L ( E , F ) , Proc. Amer. Math. Soc. 39 (1973), 175–177. (1973) Zbl0262.46015MR0315407
  5. Locally Convex Spaces, Teubner-Verlag, Stuttgart, 1981. (1981) Zbl0466.46001MR0632257
  6. 10.1007/s10587-005-0054-5, Czechoslovak Math. J 55 (2005), 677–681. (2005) Zbl1081.46017MR2153091DOI10.1007/s10587-005-0054-5
  7. On w *   basic sequences and their applications to the study of Banach spaces, Studia Math. 43 (1972), 77–92. (1972) MR0310598
  8. Topological Vector Spaces  II, Springer-Verlag, Berlin-Heidelberg-New York, 1984. (1984) MR0551623
  9. A note on the paper of I.  Singer “Basic sequences and reflexivity of Banach spaces”, Studia Math. 21 (1962), 371–374. (1962) MR0146636
  10. Biorthogonal systems and reflexivity of Banach spaces, Czechoslovak Math.  J. 9 (1959), 319–325. (1959) MR0110008
  11. Reflexivity of  L ( E , F ) , Proc. Amer. Math. Soc. 34 (1972), 171–174. (1972) Zbl0242.46018MR0291777
  12. Duality and geometry of spaces of compact operators, In: Functional Analysis: Surveys and Recent Results  III. Math. Studies  90, North Holland, , 1984. (1984) Zbl0573.46007MR0761373
  13. Basic sequences and reflexivity of Banach spaces, Studia Math. 21 (1962), 351–369. (1962) Zbl0114.30903MR0146635
  14. Bases in Banach Spaces, Vol.  I, Springer-Verlag, Berlin-Heidelberg-New York, 1970. (1970) MR0298399

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.