An upper bound for domination number of 5-regular graphs
Hua Ming Xing; Liang Sun; Xue-Gang Chen
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 3, page 1049-1061
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topXing, Hua Ming, Sun, Liang, and Chen, Xue-Gang. "An upper bound for domination number of 5-regular graphs." Czechoslovak Mathematical Journal 56.3 (2006): 1049-1061. <http://eudml.org/doc/31090>.
@article{Xing2006,
abstract = {Let $G=(V, E)$ be a simple graph. A subset $S\subseteq V$ is a dominating set of $G$, if for any vertex $u\in V-S$, there exists a vertex $v\in S$ such that $uv\in E$. The domination number, denoted by $\gamma (G)$, is the minimum cardinality of a dominating set. In this paper we will prove that if $G$ is a 5-regular graph, then $\gamma (G)\le \{5\over 14\}n$.},
author = {Xing, Hua Ming, Sun, Liang, Chen, Xue-Gang},
journal = {Czechoslovak Mathematical Journal},
keywords = {domination number; 5-regular graph; upper bounds; domination number; 5-regular graph; upper bounds},
language = {eng},
number = {3},
pages = {1049-1061},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {An upper bound for domination number of 5-regular graphs},
url = {http://eudml.org/doc/31090},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Xing, Hua Ming
AU - Sun, Liang
AU - Chen, Xue-Gang
TI - An upper bound for domination number of 5-regular graphs
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 3
SP - 1049
EP - 1061
AB - Let $G=(V, E)$ be a simple graph. A subset $S\subseteq V$ is a dominating set of $G$, if for any vertex $u\in V-S$, there exists a vertex $v\in S$ such that $uv\in E$. The domination number, denoted by $\gamma (G)$, is the minimum cardinality of a dominating set. In this paper we will prove that if $G$ is a 5-regular graph, then $\gamma (G)\le {5\over 14}n$.
LA - eng
KW - domination number; 5-regular graph; upper bounds; domination number; 5-regular graph; upper bounds
UR - http://eudml.org/doc/31090
ER -
References
top- On the vertex-independence number and star decomposition of graphs, Ars Combin. 20 (1985), 167–180. (1985) MR0824858
- 10.1155/S016117129000031X, Internat. J. Math. Sci. 13 (1990), 205–206. (1990) MR1038667DOI10.1155/S016117129000031X
- Fundamentals of domination in graphs, Marcel Dekker, New York, 1998. (1998) MR1605684
- 10.1007/s10587-004-6438-0, Czechoslovak Math. J. 54 (2004), 889–898. (2004) MR2100002DOI10.1007/s10587-004-6438-0
- 10.1002/jgt.3190130610, J. Graph Theory 13 (1989), 749–762. (1989) MR1025896DOI10.1002/jgt.3190130610
- Theory of Graphs. Amer. Math. Soc. Colloq. Publ. Vol. 38, Amer. Math. Soc., Providence, 1962. (1962) MR0150753
- 10.1017/S0963548300002042, Comb. Prob. Comp. 5 (1996), 277–295. (1996) Zbl0857.05052MR1411088DOI10.1017/S0963548300002042
- The upper bounds on domination number of 6-regular graphs, Manuscript.
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.