On left C - 𝒰 -liberal semigroups

Yong He; Fang Shao; Shi-qun Li; Wei Gao

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 4, page 1085-1108
  • ISSN: 0011-4642

Abstract

top
In this paper the equivalence 𝒬 ˜ U on a semigroup S in terms of a set U of idempotents in S is defined. A semigroup S is called a 𝒰 -liberal semigroup with U as the set of projections and denoted by S ( U ) if every 𝒬 ˜ U -class in it contains an element in U . A class of 𝒰 -liberal semigroups is characterized and some special cases are considered.

How to cite

top

He, Yong, et al. "On left $C$-$\mathcal {U}$-liberal semigroups." Czechoslovak Mathematical Journal 56.4 (2006): 1085-1108. <http://eudml.org/doc/31092>.

@article{He2006,
abstract = {In this paper the equivalence $\tilde\{\mathcal \{Q\}\}^U$ on a semigroup $S$ in terms of a set $U$ of idempotents in $S$ is defined. A semigroup $S$ is called a $\mathcal \{U\}$-liberal semigroup with $U$ as the set of projections and denoted by $S(U)$ if every $\tilde\{\mathcal \{Q\}\}^U$-class in it contains an element in $U$. A class of $\mathcal \{U\}$-liberal semigroups is characterized and some special cases are considered.},
author = {He, Yong, Shao, Fang, Li, Shi-qun, Gao, Wei},
journal = {Czechoslovak Mathematical Journal},
keywords = {equivalence $\tilde\{\mathcal \{Q\}\}^U$; left $C$-$\mathcal \{U\}$-liberal semigroup; left semi-spined product; band-formal construction; left $C$-liberal semigroup; equivalences; left liberal semigroups; left semi-spined products; idempotents},
language = {eng},
number = {4},
pages = {1085-1108},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On left $C$-$\mathcal \{U\}$-liberal semigroups},
url = {http://eudml.org/doc/31092},
volume = {56},
year = {2006},
}

TY - JOUR
AU - He, Yong
AU - Shao, Fang
AU - Li, Shi-qun
AU - Gao, Wei
TI - On left $C$-$\mathcal {U}$-liberal semigroups
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 4
SP - 1085
EP - 1108
AB - In this paper the equivalence $\tilde{\mathcal {Q}}^U$ on a semigroup $S$ in terms of a set $U$ of idempotents in $S$ is defined. A semigroup $S$ is called a $\mathcal {U}$-liberal semigroup with $U$ as the set of projections and denoted by $S(U)$ if every $\tilde{\mathcal {Q}}^U$-class in it contains an element in $U$. A class of $\mathcal {U}$-liberal semigroups is characterized and some special cases are considered.
LA - eng
KW - equivalence $\tilde{\mathcal {Q}}^U$; left $C$-$\mathcal {U}$-liberal semigroup; left semi-spined product; band-formal construction; left $C$-liberal semigroup; equivalences; left liberal semigroups; left semi-spined products; idempotents
UR - http://eudml.org/doc/31092
ER -

References

top
  1. On the **-Green’s relations of semigroups and C -broad semigroups, J.  Northwest Univ. (Natural Sci. Edt.) 29 (1999), 9–12. (1999) 
  2. Structure theory for abundant and related semigroups, PhD. Thesis, , York, 1980. (1980) 
  3. 10.1007/BF02194941, Semigroup Forum 13 (1977), 229–237. (1977) DOI10.1007/BF02194941
  4. Adequate semigroups, Proc. Edinburgh Math. Soc. 44 (1979), 113–125. (1979) Zbl0414.20048MR0549457
  5. Abundant semigroups, Proc. London Math. Soc. 44 (1982), 103–129. (1982) Zbl0481.20036MR0642795
  6. 10.1006/jabr.1999.7871, J.  Algebra 218 (1999), 693–714. (1999) MR1705754DOI10.1006/jabr.1999.7871
  7. 10.1007/s002330010054, Semigroup Forum 63 (2001), 11–33. (2001) MR1830041DOI10.1007/s002330010054
  8. Another structure of left C -semigroups, Adv. Math. 24 (1995), 39–43. (1995) MR1334601
  9. 10.1007/BF02573502, Semigroup Forum 50 (1995), 9–23. (1995) MR1301549DOI10.1007/BF02573502
  10. A construction for 𝒫 -regular semigroups (announcement), Adv. Math. 29 (2000), 566–568. (2000) 
  11. 10.1007/s002330010059, Semigroup Forum 64 (2002), 325–328. (2002) Zbl1002.20037MR1876862DOI10.1007/s002330010059
  12. Some studies on regular and generalized regular semigroups, PhD. Thesis, Zhongshan Univ., Guangzhou, 2002. (2002) MR2021655
  13. 10.1081/AGB-120016747, Commun. Algebra 31 (2003), 1–27. (2003) MR1969210DOI10.1081/AGB-120016747
  14. 10.1360/02ys0365, Sci. China 47 (2004), 552–565. (2004) MR2128582DOI10.1360/02ys0365
  15. Fundamentals of Semigroup Theory, Oxford University Press Inc., New York, 1995. (1995) Zbl0835.20077MR1455373
  16. 10.1007/BF02574099, Semigroup Forum 52 (1996), 241–245. (1996) Zbl0844.20051MR1371806DOI10.1007/BF02574099
  17. Rees matrix semigroups, Proc. Edinburgh Math. Soc. 33 (1990), 23–37. (1990) Zbl0668.20049MR1038762
  18. 10.1016/0021-8693(91)90242-Z, J.  Algebra 141 (1991), 422–462. (1991) Zbl0747.18007MR1125706DOI10.1016/0021-8693(91)90242-Z
  19. 10.1016/0021-8693(76)90158-7, J.  Algebra 43 (1976), 231–251. (1976) Zbl0349.20025MR0424980DOI10.1016/0021-8693(76)90158-7
  20. Inverse Semigroups, John Wiley & Sons, New York, 1984. (1984) Zbl0546.20053MR0752899
  21. Completely Regular Semigroups, John Wiley & Sons, New York, 1999. (1999) MR1684919
  22. 10.1007/s00233-005-0528-7, Semigroup Forum 71 (2005), 401–410. (2005) Zbl1098.20046MR2204759DOI10.1007/s00233-005-0528-7
  23. 10.1080/00927879708825931, Comm. Algebra 25 (1997), 1499–1504. (1997) Zbl0879.20030MR1444014DOI10.1080/00927879708825931
  24. 10.1007/BF02572766, Semigroup Forum 24 (1982), 173–187. (1982) Zbl0479.20030MR0650569DOI10.1007/BF02572766
  25. 10.1007/BF02573295, Semigroup Forum 39 (1989), 157–178. (1989) MR0995827DOI10.1007/BF02573295
  26. 10.1007/BF02676611, Semigroup Forum 54 (1997), 278–291. (1997) MR1436847DOI10.1007/BF02676611
  27. Structure and characterizations of left Clifford semigroups, Science in China, Series  A 35 (1992), 791–805. (1992) MR1196631

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.