On left --liberal semigroups
Yong He; Fang Shao; Shi-qun Li; Wei Gao
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 4, page 1085-1108
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topHe, Yong, et al. "On left $C$-$\mathcal {U}$-liberal semigroups." Czechoslovak Mathematical Journal 56.4 (2006): 1085-1108. <http://eudml.org/doc/31092>.
@article{He2006,
abstract = {In this paper the equivalence $\tilde\{\mathcal \{Q\}\}^U$ on a semigroup $S$ in terms of a set $U$ of idempotents in $S$ is defined. A semigroup $S$ is called a $\mathcal \{U\}$-liberal semigroup with $U$ as the set of projections and denoted by $S(U)$ if every $\tilde\{\mathcal \{Q\}\}^U$-class in it contains an element in $U$. A class of $\mathcal \{U\}$-liberal semigroups is characterized and some special cases are considered.},
author = {He, Yong, Shao, Fang, Li, Shi-qun, Gao, Wei},
journal = {Czechoslovak Mathematical Journal},
keywords = {equivalence $\tilde\{\mathcal \{Q\}\}^U$; left $C$-$\mathcal \{U\}$-liberal semigroup; left semi-spined product; band-formal construction; left $C$-liberal semigroup; equivalences; left liberal semigroups; left semi-spined products; idempotents},
language = {eng},
number = {4},
pages = {1085-1108},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On left $C$-$\mathcal \{U\}$-liberal semigroups},
url = {http://eudml.org/doc/31092},
volume = {56},
year = {2006},
}
TY - JOUR
AU - He, Yong
AU - Shao, Fang
AU - Li, Shi-qun
AU - Gao, Wei
TI - On left $C$-$\mathcal {U}$-liberal semigroups
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 4
SP - 1085
EP - 1108
AB - In this paper the equivalence $\tilde{\mathcal {Q}}^U$ on a semigroup $S$ in terms of a set $U$ of idempotents in $S$ is defined. A semigroup $S$ is called a $\mathcal {U}$-liberal semigroup with $U$ as the set of projections and denoted by $S(U)$ if every $\tilde{\mathcal {Q}}^U$-class in it contains an element in $U$. A class of $\mathcal {U}$-liberal semigroups is characterized and some special cases are considered.
LA - eng
KW - equivalence $\tilde{\mathcal {Q}}^U$; left $C$-$\mathcal {U}$-liberal semigroup; left semi-spined product; band-formal construction; left $C$-liberal semigroup; equivalences; left liberal semigroups; left semi-spined products; idempotents
UR - http://eudml.org/doc/31092
ER -
References
top- On the **-Green’s relations of semigroups and -broad semigroups, J. Northwest Univ. (Natural Sci. Edt.) 29 (1999), 9–12. (1999)
- Structure theory for abundant and related semigroups, PhD. Thesis, , York, 1980. (1980)
- 10.1007/BF02194941, Semigroup Forum 13 (1977), 229–237. (1977) DOI10.1007/BF02194941
- Adequate semigroups, Proc. Edinburgh Math. Soc. 44 (1979), 113–125. (1979) Zbl0414.20048MR0549457
- Abundant semigroups, Proc. London Math. Soc. 44 (1982), 103–129. (1982) Zbl0481.20036MR0642795
- 10.1006/jabr.1999.7871, J. Algebra 218 (1999), 693–714. (1999) MR1705754DOI10.1006/jabr.1999.7871
- 10.1007/s002330010054, Semigroup Forum 63 (2001), 11–33. (2001) MR1830041DOI10.1007/s002330010054
- Another structure of left -semigroups, Adv. Math. 24 (1995), 39–43. (1995) MR1334601
- 10.1007/BF02573502, Semigroup Forum 50 (1995), 9–23. (1995) MR1301549DOI10.1007/BF02573502
- A construction for -regular semigroups (announcement), Adv. Math. 29 (2000), 566–568. (2000)
- 10.1007/s002330010059, Semigroup Forum 64 (2002), 325–328. (2002) Zbl1002.20037MR1876862DOI10.1007/s002330010059
- Some studies on regular and generalized regular semigroups, PhD. Thesis, Zhongshan Univ., Guangzhou, 2002. (2002) MR2021655
- 10.1081/AGB-120016747, Commun. Algebra 31 (2003), 1–27. (2003) MR1969210DOI10.1081/AGB-120016747
- 10.1360/02ys0365, Sci. China 47 (2004), 552–565. (2004) MR2128582DOI10.1360/02ys0365
- Fundamentals of Semigroup Theory, Oxford University Press Inc., New York, 1995. (1995) Zbl0835.20077MR1455373
- 10.1007/BF02574099, Semigroup Forum 52 (1996), 241–245. (1996) Zbl0844.20051MR1371806DOI10.1007/BF02574099
- Rees matrix semigroups, Proc. Edinburgh Math. Soc. 33 (1990), 23–37. (1990) Zbl0668.20049MR1038762
- 10.1016/0021-8693(91)90242-Z, J. Algebra 141 (1991), 422–462. (1991) Zbl0747.18007MR1125706DOI10.1016/0021-8693(91)90242-Z
- 10.1016/0021-8693(76)90158-7, J. Algebra 43 (1976), 231–251. (1976) Zbl0349.20025MR0424980DOI10.1016/0021-8693(76)90158-7
- Inverse Semigroups, John Wiley & Sons, New York, 1984. (1984) Zbl0546.20053MR0752899
- Completely Regular Semigroups, John Wiley & Sons, New York, 1999. (1999) MR1684919
- 10.1007/s00233-005-0528-7, Semigroup Forum 71 (2005), 401–410. (2005) Zbl1098.20046MR2204759DOI10.1007/s00233-005-0528-7
- 10.1080/00927879708825931, Comm. Algebra 25 (1997), 1499–1504. (1997) Zbl0879.20030MR1444014DOI10.1080/00927879708825931
- 10.1007/BF02572766, Semigroup Forum 24 (1982), 173–187. (1982) Zbl0479.20030MR0650569DOI10.1007/BF02572766
- 10.1007/BF02573295, Semigroup Forum 39 (1989), 157–178. (1989) MR0995827DOI10.1007/BF02573295
- 10.1007/BF02676611, Semigroup Forum 54 (1997), 278–291. (1997) MR1436847DOI10.1007/BF02676611
- Structure and characterizations of left Clifford semigroups, Science in China, Series A 35 (1992), 791–805. (1992) MR1196631
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.