A note on the diophantine equation x 2 + b Y = c z

Maohua Le

Czechoslovak Mathematical Journal (2006)

  • Volume: 56, Issue: 4, page 1109-1116
  • ISSN: 0011-4642

Abstract

top
Let a , b , c , r be positive integers such that a 2 + b 2 = c r , min ( a , b , c , r ) > 1 , gcd ( a , b ) = 1 , a is even and r is odd. In this paper we prove that if b 3 ( m o d 4 ) and either b or c is an odd prime power, then the equation x 2 + b y = c z has only the positive integer solution ( x , y , z ) = ( a , 2 , r ) with min ( y , z ) > 1 .

How to cite

top

Le, Maohua. "A note on the diophantine equation $x^2+b^Y=c^z$." Czechoslovak Mathematical Journal 56.4 (2006): 1109-1116. <http://eudml.org/doc/31093>.

@article{Le2006,
abstract = {Let $a$, $b$, $c$, $r$ be positive integers such that $a^\{2\}+b^\{2\}=c^\{r\}$, $\min (a,b,c,r)>1$, $\gcd (a,b)=1, a$ is even and $r$ is odd. In this paper we prove that if $b\equiv 3\hspace\{4.44443pt\}(mod \; 4)$ and either $b$ or $c$ is an odd prime power, then the equation $x^\{2\}+b^\{y\}=c^\{z\}$ has only the positive integer solution $(x,y,z)=(a,2,r)$ with $\min (y,z)>1$.},
author = {Le, Maohua},
journal = {Czechoslovak Mathematical Journal},
keywords = {exponential diophantine equation; Lucas number; positive divisor; exponential diophantine equation; Lucas number; positive divisor},
language = {eng},
number = {4},
pages = {1109-1116},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the diophantine equation $x^2+b^Y=c^z$},
url = {http://eudml.org/doc/31093},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Le, Maohua
TI - A note on the diophantine equation $x^2+b^Y=c^z$
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 4
SP - 1109
EP - 1116
AB - Let $a$, $b$, $c$, $r$ be positive integers such that $a^{2}+b^{2}=c^{r}$, $\min (a,b,c,r)>1$, $\gcd (a,b)=1, a$ is even and $r$ is odd. In this paper we prove that if $b\equiv 3\hspace{4.44443pt}(mod \; 4)$ and either $b$ or $c$ is an odd prime power, then the equation $x^{2}+b^{y}=c^{z}$ has only the positive integer solution $(x,y,z)=(a,2,r)$ with $\min (y,z)>1$.
LA - eng
KW - exponential diophantine equation; Lucas number; positive divisor; exponential diophantine equation; Lucas number; positive divisor
UR - http://eudml.org/doc/31093
ER -

References

top
  1. Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75–122. (2001) MR1863855
  2. 10.1007/s006050170046, Monatsh. Math. 132 (2001), 93–97. (2001) Zbl1014.11023MR1838399DOI10.1007/s006050170046
  3. The diophantine equation a 2 + b y = c z , Proc. Japan Acad. 77A (2001), 1–4. (2001) MR1934716
  4. A new conjecture concerning the diophantine equation x 2 + b y = c z , Proc. Japan Acad. 78A (2002), 199–202. (2002) MR1950170
  5. Several remarks on Pythagorean number, Wiadom. Mat. 1 (1955/1956), 196–202. (Polish) (1955/1956) MR0110662
  6. On the diophantine equation x 2 = y n + 1 , x y 0 , Sci.Sin. 14 (1964), 457–460. (1964) MR0183684
  7. A note on Jeśmanowicz’ conjecture, Colloq. Math. 64 (1995), 47–51. (1995) Zbl0849.11036MR1341681
  8. Diophantine Equations, Academic Press, London, 1969. (1969) Zbl0188.34503MR0249355
  9. Sur I’impossibilité de quelques equation á deux indéterminées, Norsk Matem. Forenings Skrifter 13 (1921), 65–82. (1921) 
  10. 10.4064/aa-63-4-351-358, Acta Arith. 63 (1993), 351–358. (1993) MR1218462DOI10.4064/aa-63-4-351-358
  11. 10.1090/S0025-5718-1995-1284673-6, Math. Comp. 64 (1995), 869–888. (1995) Zbl0832.11009MR1284673DOI10.1090/S0025-5718-1995-1284673-6

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.