A note on the diophantine equation
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 4, page 1109-1116
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLe, Maohua. "A note on the diophantine equation $x^2+b^Y=c^z$." Czechoslovak Mathematical Journal 56.4 (2006): 1109-1116. <http://eudml.org/doc/31093>.
@article{Le2006,
abstract = {Let $a$, $b$, $c$, $r$ be positive integers such that $a^\{2\}+b^\{2\}=c^\{r\}$, $\min (a,b,c,r)>1$, $\gcd (a,b)=1, a$ is even and $r$ is odd. In this paper we prove that if $b\equiv 3\hspace\{4.44443pt\}(mod \; 4)$ and either $b$ or $c$ is an odd prime power, then the equation $x^\{2\}+b^\{y\}=c^\{z\}$ has only the positive integer solution $(x,y,z)=(a,2,r)$ with $\min (y,z)>1$.},
author = {Le, Maohua},
journal = {Czechoslovak Mathematical Journal},
keywords = {exponential diophantine equation; Lucas number; positive divisor; exponential diophantine equation; Lucas number; positive divisor},
language = {eng},
number = {4},
pages = {1109-1116},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A note on the diophantine equation $x^2+b^Y=c^z$},
url = {http://eudml.org/doc/31093},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Le, Maohua
TI - A note on the diophantine equation $x^2+b^Y=c^z$
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 4
SP - 1109
EP - 1116
AB - Let $a$, $b$, $c$, $r$ be positive integers such that $a^{2}+b^{2}=c^{r}$, $\min (a,b,c,r)>1$, $\gcd (a,b)=1, a$ is even and $r$ is odd. In this paper we prove that if $b\equiv 3\hspace{4.44443pt}(mod \; 4)$ and either $b$ or $c$ is an odd prime power, then the equation $x^{2}+b^{y}=c^{z}$ has only the positive integer solution $(x,y,z)=(a,2,r)$ with $\min (y,z)>1$.
LA - eng
KW - exponential diophantine equation; Lucas number; positive divisor; exponential diophantine equation; Lucas number; positive divisor
UR - http://eudml.org/doc/31093
ER -
References
top- Existence of primitive divisors of Lucas and Lehmer numbers, J. Reine Angew. Math. 539 (2001), 75–122. (2001) MR1863855
- 10.1007/s006050170046, Monatsh. Math. 132 (2001), 93–97. (2001) Zbl1014.11023MR1838399DOI10.1007/s006050170046
- The diophantine equation , Proc. Japan Acad. 77A (2001), 1–4. (2001) MR1934716
- A new conjecture concerning the diophantine equation , Proc. Japan Acad. 78A (2002), 199–202. (2002) MR1950170
- Several remarks on Pythagorean number, Wiadom. Mat. 1 (1955/1956), 196–202. (Polish) (1955/1956) MR0110662
- On the diophantine equation , Sci.Sin. 14 (1964), 457–460. (1964) MR0183684
- A note on Jeśmanowicz’ conjecture, Colloq. Math. 64 (1995), 47–51. (1995) Zbl0849.11036MR1341681
- Diophantine Equations, Academic Press, London, 1969. (1969) Zbl0188.34503MR0249355
- Sur I’impossibilité de quelques equation á deux indéterminées, Norsk Matem. Forenings Skrifter 13 (1921), 65–82. (1921)
- 10.4064/aa-63-4-351-358, Acta Arith. 63 (1993), 351–358. (1993) MR1218462DOI10.4064/aa-63-4-351-358
- 10.1090/S0025-5718-1995-1284673-6, Math. Comp. 64 (1995), 869–888. (1995) Zbl0832.11009MR1284673DOI10.1090/S0025-5718-1995-1284673-6
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.