On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 4, page 1117-1129
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Jinsong, and Tan, Yi Jia. "On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices." Czechoslovak Mathematical Journal 56.4 (2006): 1117-1129. <http://eudml.org/doc/31094>.
@article{Chen2006,
abstract = {Let $n$ be a positive integer, and $C_\{n\} (r)$ the set of all $n\times n$$r$-circulant matrices over the Boolean algebra $B=\lbrace 0,1\rbrace $, $G_\{n\}=\bigcup _\{r=0\}^\{n-1\}C_\{n\}(r)$. For any fixed $r$-circulant matrix $C$ ($C\ne 0$) in $G_\{n\}$, we define an operation “$\ast $” in $G_\{n\}$ as follows: $A\ast B=ACB$ for any $A,B$ in $G_\{n\}$, where $ACB$ is the usual product of Boolean matrices. Then $(G_\{n\},\ast )$ is a semigroup. We denote this semigroup by $G_\{n\}(C)$ and call it the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix $C$. Let $F$ be an idempotent element in $G_\{n\}(C)$ and $M(F)$ the maximal subgroup in $G_\{n\}(C)$ containing the idempotent element $F$. In this paper, the elements in $M(F)$ are characterized and an algorithm to determine all the elements in $M(F)$ is given.},
author = {Chen, Jinsong, Tan, Yi Jia},
journal = {Czechoslovak Mathematical Journal},
keywords = {generalized ciculant Boolean matrix; sandwich semigroup; idempotent element; maximal subgroup; generalized circulant Boolean matrix; sandwich semigroup; idempotent element; maximal subgroup},
language = {eng},
number = {4},
pages = {1117-1129},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices},
url = {http://eudml.org/doc/31094},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Chen, Jinsong
AU - Tan, Yi Jia
TI - On the maximal subgroup of the sandwich semigroup of generalized circulant Boolean matrices
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 4
SP - 1117
EP - 1129
AB - Let $n$ be a positive integer, and $C_{n} (r)$ the set of all $n\times n$$r$-circulant matrices over the Boolean algebra $B=\lbrace 0,1\rbrace $, $G_{n}=\bigcup _{r=0}^{n-1}C_{n}(r)$. For any fixed $r$-circulant matrix $C$ ($C\ne 0$) in $G_{n}$, we define an operation “$\ast $” in $G_{n}$ as follows: $A\ast B=ACB$ for any $A,B$ in $G_{n}$, where $ACB$ is the usual product of Boolean matrices. Then $(G_{n},\ast )$ is a semigroup. We denote this semigroup by $G_{n}(C)$ and call it the sandwich semigroup of generalized circulant Boolean matrices with sandwich matrix $C$. Let $F$ be an idempotent element in $G_{n}(C)$ and $M(F)$ the maximal subgroup in $G_{n}(C)$ containing the idempotent element $F$. In this paper, the elements in $M(F)$ are characterized and an algorithm to determine all the elements in $M(F)$ is given.
LA - eng
KW - generalized ciculant Boolean matrix; sandwich semigroup; idempotent element; maximal subgroup; generalized circulant Boolean matrix; sandwich semigroup; idempotent element; maximal subgroup
UR - http://eudml.org/doc/31094
ER -
References
top- 10.1016/0024-3795(84)90095-8, Linear Algebra Appl. 62 (1984), 195–206. (1984) MR0761067DOI10.1016/0024-3795(84)90095-8
- On the sandwich semigroups of circulant Boolean matrices, Linear Algebra Appl. 179 (1993), 135–160. (1993) Zbl0768.20031MR1200148
- On the maximal subgroup of the semigroup of generalized circulant Boolean matrices, Linear Algebra Appl. 151 (1991), 229–243. (1991) MR1102151
- The Algebra Theory of Semigroups, Vol. 1, Amer. Math. Soc., Providence, 1961. (1961) MR0132791
- Maximal subgroup of semigroup of relations, J. Algebra 13 (1969), 575–587. (1969) MR0252539
- The semigroup of circulant Boolean matrices, Czechoslovak Math. J. 26(101) (1976), 632–635. (1976) Zbl0347.20037MR0430121
- The idempotent elements in the sandwich semigroup of generalized elements Boolean mareices, J. Fuzhou Univ. Nat. Sci. 31 (2003), 505–509. (2003) MR2023977
- A Classical Introduction to Modern Number Theory, Springer-Verlag, New York, 1982. (1982) MR0661047
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.