On totally -paranormal operators
Eungil Ko; Hae-Won Nam; Young Oh Yang
Czechoslovak Mathematical Journal (2006)
- Volume: 56, Issue: 4, page 1265-1280
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKo, Eungil, Nam, Hae-Won, and Yang, Young Oh. "On totally $\ast $-paranormal operators." Czechoslovak Mathematical Journal 56.4 (2006): 1265-1280. <http://eudml.org/doc/31104>.
@article{Ko2006,
abstract = {In this paper we study some properties of a totally $\ast $-paranormal operator (defined below) on Hilbert space. In particular, we characterize a totally $\ast $-paranormal operator. Also we show that Weyl’s theorem and the spectral mapping theorem hold for totally $\ast $-paranormal operators through the local spectral theory. Finally, we show that every totally $\ast $-paranormal operator satisfies an analogue of the single valued extension property for $W^\{2\}(D,H)$ and some of totally $\ast $-paranormal operators have scalar extensions.},
author = {Ko, Eungil, Nam, Hae-Won, Yang, Young Oh},
journal = {Czechoslovak Mathematical Journal},
keywords = {hyponormal; totally $\ast $-paranormal; hypercyclic; operators; hyponormal; totally -paranormal; hypercyclic operators},
language = {eng},
number = {4},
pages = {1265-1280},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On totally $\ast $-paranormal operators},
url = {http://eudml.org/doc/31104},
volume = {56},
year = {2006},
}
TY - JOUR
AU - Ko, Eungil
AU - Nam, Hae-Won
AU - Yang, Young Oh
TI - On totally $\ast $-paranormal operators
JO - Czechoslovak Mathematical Journal
PY - 2006
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 56
IS - 4
SP - 1265
EP - 1280
AB - In this paper we study some properties of a totally $\ast $-paranormal operator (defined below) on Hilbert space. In particular, we characterize a totally $\ast $-paranormal operator. Also we show that Weyl’s theorem and the spectral mapping theorem hold for totally $\ast $-paranormal operators through the local spectral theory. Finally, we show that every totally $\ast $-paranormal operator satisfies an analogue of the single valued extension property for $W^{2}(D,H)$ and some of totally $\ast $-paranormal operators have scalar extensions.
LA - eng
KW - hyponormal; totally $\ast $-paranormal; hypercyclic; operators; hyponormal; totally -paranormal; hypercyclic operators
UR - http://eudml.org/doc/31104
ER -
References
top- Approximation of Hilbert space operators, Volume II, Research Notes in Mathematics 102, Pitman, Boston, 1984. (1984) MR0735080
- On a class of operators, Glasnik Math. 21 (1986), 381–386. (1986) MR0896819
- 10.1307/mmj/1029000272, Michigan Math J. 16 (1969), 273–279. (1969) Zbl0175.13603MR0250094DOI10.1307/mmj/1029000272
- 10.1512/iumj.1971.20.20044, Indiana Univ. Math. J. 20 (1970), 529–544. (1970) MR0279623DOI10.1512/iumj.1971.20.20044
- 10.2307/1971289, Ann. of Math. 125 (1987), 93–103. (1987) MR0873378DOI10.2307/1971289
- 10.1307/mmj/1031732778, Michigan Math. J. 13 (1966), 285–288. (1966) MR0201969DOI10.1307/mmj/1031732778
- Theory of generalized spectral operators, Gordon and Breach, New York, 1968. (1968) MR0394282
- Subnormal operators, Pitman, London, 1981. (1981) Zbl0474.47013MR0634507
- Weyl’s theorem through local spectral theory, Glasgow Math. J. 44 (2002), 323–327. (2002) MR1902409
- On the spectrum of -hyponormal operators, Acta Sci. Math. (Szeged) 63 (1997), 623–637. (1997) Zbl0893.47013MR1480502
- 10.1007/BF01237569, Arch. Math. 52 (1989), 562–570. (1989) Zbl0651.47002MR1007631DOI10.1007/BF01237569
- A Hilbert space problem book, Springer-Verlag, 1982. (1982) Zbl0496.47001MR0675952
- Invertibility and singularity, Dekker, New York, 1988. (1988) Zbl0678.47001
- Invariant closed sets for linear operators, Ph.D. Thesis, Univ. of Toronto, 1982. (1982)
- Algebraic and triangular -hyponormal operators, Proc. Amer. Math. Soc. 123 (1995), 3473–3481. (1995) Zbl0877.47015MR1291779
- 10.2140/pjm.1992.152.323, Pacific J. Math. 152 (1992), 323–336. (1992) Zbl0783.47028MR1141799DOI10.2140/pjm.1992.152.323
- 10.1090/S0002-9939-97-03852-5, Proc. Amer. Math. Soc. 125 (1997), 1425–1434. (1997) Zbl0871.47003MR1389525DOI10.1090/S0002-9939-97-03852-5
- 10.1215/ijm/1256051222, Illinois J. Math. 18 (1974), 208–212. (1974) Zbl0277.47002MR0333762DOI10.1215/ijm/1256051222
- 10.1215/ijm/1256049504, Illinois J. Math. 21 (1977), 84–90. (1977) Zbl0358.47004MR0428073DOI10.1215/ijm/1256049504
- Hyponormal operators are subscalar, J. Operator Th. 12 (1984), 385–395. (1984) Zbl0573.47016MR0757441
- 10.1017/S0017089500005966, Glasgow Math. J. 26 (1985), 177–180. (1985) Zbl0583.47006MR0798746DOI10.1017/S0017089500005966
- Spectral, -hyponormal and decomposable operators, Ph.D. thesis, Indiana Univ., 1971. (1971)
- Spectral theory of hyponormal operators, Operator Theory 10, Birkhäuser-Verlag, 1983. (1983) Zbl0523.47012MR0806959
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.