Commutators of singular integrals on spaces of homogeneous type
Gladis Pradolini; Oscar Salinas
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 75-93
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topPradolini, Gladis, and Salinas, Oscar. "Commutators of singular integrals on spaces of homogeneous type." Czechoslovak Mathematical Journal 57.1 (2007): 75-93. <http://eudml.org/doc/31114>.
@article{Pradolini2007,
abstract = {In this work we prove some sharp weighted inequalities on spaces of homogeneous type for the higher order commutators of singular integrals introduced by R. Coifman, R. Rochberg and G. Weiss in Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611–635. As a corollary, we obtain that these operators are bounded on $L^\{p\}(w)$ when $w$ belongs to the Muckenhoupt’s class $A_\{p\}$, $p>1$. In addition, as an important tool in order to get our main result, we prove a weighted Fefferman-Stein type inequality on spaces of homogeneous type, which we have not found previously in the literature.},
author = {Pradolini, Gladis, Salinas, Oscar},
journal = {Czechoslovak Mathematical Journal},
keywords = {commutators; spaces of homogeneous type; weights; commutators; spaces of homogeneous type; weights},
language = {eng},
number = {1},
pages = {75-93},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Commutators of singular integrals on spaces of homogeneous type},
url = {http://eudml.org/doc/31114},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Pradolini, Gladis
AU - Salinas, Oscar
TI - Commutators of singular integrals on spaces of homogeneous type
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 75
EP - 93
AB - In this work we prove some sharp weighted inequalities on spaces of homogeneous type for the higher order commutators of singular integrals introduced by R. Coifman, R. Rochberg and G. Weiss in Factorization theorems for Hardy spaces in several variables, Ann. Math. 103 (1976), 611–635. As a corollary, we obtain that these operators are bounded on $L^{p}(w)$ when $w$ belongs to the Muckenhoupt’s class $A_{p}$, $p>1$. In addition, as an important tool in order to get our main result, we prove a weighted Fefferman-Stein type inequality on spaces of homogeneous type, which we have not found previously in the literature.
LA - eng
KW - commutators; spaces of homogeneous type; weights; commutators; spaces of homogeneous type; weights
UR - http://eudml.org/doc/31114
ER -
References
top- 10.1090/S0002-9947-1985-0805957-9, Trans. Am. Math. Soc. 292 (1985), 135–153. (1985) Zbl0578.42016MR0805957DOI10.1090/S0002-9947-1985-0805957-9
- Rearrangement and continuity properties of functions on spaces of homogeneous type, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV. Ser. 18 (1991), 353–362. (1991) MR1145315
- Commutators of singular integrals and fractional integrals on homogeneous spaces, In: Harmonic Analysis and Operator Theory. Proceedings of the conference in honor of Mischa Cotlar, January 3–8, 1994, Caracas, Venezuela, S. A. M. Marcantognini et al. (eds.), Am. Math. Soc., Providence. MR1347007
- Commutators of singular integrals on homogeneous spaces, Boll. Unione Mat. Ital., VII. Ser. B 10 (1996), 843–883. (1996) MR1430157
- 10.1073/pnas.69.10.2838, Proc. Natl. Acad. Sci. USA 69 (1972), 2838–2839. (1972) Zbl0243.44006MR0303226DOI10.1073/pnas.69.10.2838
- 10.1007/BFb0058946, Springer-Verlag, Berlin-New York, 1971. (1971) MR0499948DOI10.1007/BFb0058946
- 10.2307/1970954, Ann. Math. 103 (1976), 611–635. (1976) MR0412721DOI10.2307/1970954
- Interior estimates for non divergence elliptic equations with discontinuous coefficients, Ric. Mat. 40 (1991), 149–168. (1991) MR1191890
- -solvability of the Dirichlet problem for non divergence elliptic equations with VMO coefficients, Trans. Am. Math. Soc. 336 (1993), 841–853. (1993) MR1088476
- 10.1006/jfan.1993.1032, J. Funct. Anal. 112 (1993), 241–256. (1993) MR1213138DOI10.1006/jfan.1993.1032
- 10.1080/03605309408821025, Comm. Partial Differential Equations 19 (1994), 523–604. (1994) MR1265808DOI10.1080/03605309408821025
- 10.2307/2373450, Amer. J. Math. 93 (1971), 107–115. (1971) MR0284802DOI10.2307/2373450
- Calderón Zygmund Operators, Pseudo-Differential Operators and the Cauchy Integral of Calderón. Lecture Notes in Mathematics Vol. 994, Springer-Verlag, Berlin-New York, 1983. (1983) MR0706075
- 10.1016/0001-8708(79)90012-4, Adv. Math. 33 (1979), 257–270. (1979) MR0546295DOI10.1016/0001-8708(79)90012-4
- 10.4064/sm-65-1-55-75, Studia Math. 65 (1979), 55–75. (1979) MR0554541DOI10.4064/sm-65-1-55-75
- A well behaved quasi-distance for spaces of homogeneous type, Trabajos de Matemática, Serie I 32 (1981). (1981)
- 10.1090/S0002-9947-1965-0194881-0, Trans. Amer. Math. Soc. 115 (1965), 300–328. (1965) MR0194881DOI10.1090/S0002-9947-1965-0194881-0
- 10.1007/BF02648265, J. Fourier Anal. Appl. 3 (1997), 743–756. (1997) MR1481632DOI10.1007/BF02648265
- 10.1006/jfan.1995.1027, J. Funct. Anal. 128 (1995), 163–185. (1995) MR1317714DOI10.1006/jfan.1995.1027
- 10.1006/jfan.2000.3711, J. Funct. Anal. 181 (2001), 146–188. (2001) MR1818113DOI10.1006/jfan.2000.3711
- 10.1090/S0002-9939-03-07079-5, Proc. Amer. Math. Soc. 132 (2003), 435–441. (2003) MR2022366DOI10.1090/S0002-9939-03-07079-5
- 10.1090/S0002-9947-02-03145-8, Trans. Amer. Math. Soc. 355 (2003), 665–687. (2003) MR1932720DOI10.1090/S0002-9947-02-03145-8
- Theory of Orlicz spaces, Marcel Dekker, New York, 1991. (1991) MR1113700
- 10.2307/2007031, Ann. Math. 118 (1983), 315–347. (1983) MR0717826DOI10.2307/2007031
- 10.1090/S0002-9947-1989-0972707-9, Trans. Amer. Math. Soc. 314 (1989), 661–692. (1989) MR0972707DOI10.1090/S0002-9947-1989-0972707-9
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.