The characteristic of noncompact convexity and random fixed point theorem for set-valued operators

Poom Kumam; Somyot Plubtieng

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 1, page 269-279
  • ISSN: 0011-4642

Abstract

top
Let ( Ω , Σ ) be a measurable space, X a Banach space whose characteristic of noncompact convexity is less than 1, C a bounded closed convex subset of X , K C ( C ) the family of all compact convex subsets of C . We prove that a set-valued nonexpansive mapping T C K C ( C ) has a fixed point. Furthermore, if X is separable then we also prove that a set-valued nonexpansive operator T Ω × C K C ( C ) has a random fixed point.

How to cite

top

Kumam, Poom, and Plubtieng, Somyot. "The characteristic of noncompact convexity and random fixed point theorem for set-valued operators." Czechoslovak Mathematical Journal 57.1 (2007): 269-279. <http://eudml.org/doc/31129>.

@article{Kumam2007,
abstract = {Let $(\Omega ,\Sigma )$ be a measurable space, $X$ a Banach space whose characteristic of noncompact convexity is less than 1, $C$ a bounded closed convex subset of $X$, $KC(C)$ the family of all compact convex subsets of $C.$ We prove that a set-valued nonexpansive mapping $T\: C\rightarrow KC(C)$ has a fixed point. Furthermore, if $X$ is separable then we also prove that a set-valued nonexpansive operator $T\: \Omega \times C\rightarrow KC(C)$ has a random fixed point.},
author = {Kumam, Poom, Plubtieng, Somyot},
journal = {Czechoslovak Mathematical Journal},
keywords = {random fixed point; set-valued random operator; measure of noncompactness; random fixed point; set-valued random operator; measure of noncompactness},
language = {eng},
number = {1},
pages = {269-279},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The characteristic of noncompact convexity and random fixed point theorem for set-valued operators},
url = {http://eudml.org/doc/31129},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Kumam, Poom
AU - Plubtieng, Somyot
TI - The characteristic of noncompact convexity and random fixed point theorem for set-valued operators
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 269
EP - 279
AB - Let $(\Omega ,\Sigma )$ be a measurable space, $X$ a Banach space whose characteristic of noncompact convexity is less than 1, $C$ a bounded closed convex subset of $X$, $KC(C)$ the family of all compact convex subsets of $C.$ We prove that a set-valued nonexpansive mapping $T\: C\rightarrow KC(C)$ has a fixed point. Furthermore, if $X$ is separable then we also prove that a set-valued nonexpansive operator $T\: \Omega \times C\rightarrow KC(C)$ has a random fixed point.
LA - eng
KW - random fixed point; set-valued random operator; measure of noncompactness; random fixed point; set-valued random operator; measure of noncompactness
UR - http://eudml.org/doc/31129
ER -

References

top
  1. Set-valued Analysis, Birkhäuser, Boston, 1990. (1990) MR1048347
  2. Measures of Noncompactness in Metric Fixed Point Theory; Advances and Applications Topics in Metric Fixed Point Theory, Birkhauser-Verlag, Basel 99, 1997. (1997) MR1483889
  3. Nonlinear Functional Analysis, Springer-Verlag, Berlin, 1974. (1974) MR0787404
  4. 10.1155/S1085337503203080, Abstr. Appl. Anal. 6 (2003), 375–386. (2003) MR1982809DOI10.1155/S1085337503203080
  5. 10.1016/j.jmaa.2003.10.019, J. Math. Anal. Appl. 291 (2004), 100–108. (2004) MR2034060DOI10.1016/j.jmaa.2003.10.019
  6. 10.1090/S0002-9939-96-03062-6, Proc. Amer. Math. Soc. 124 (1996), 838–838. (1996) MR1301487DOI10.1090/S0002-9939-96-03062-6
  7. Topics in metric fixed point theorem, Cambridge University Press, Cambridge, 1990. (1990) MR1074005
  8. 10.2140/pjm.1977.68.85, Pacific J.  Math. 68 (1977), 85–90. (1977) Zbl0335.54036MR0451228DOI10.2140/pjm.1977.68.85
  9. Nonexpansive mappings in product spaces, set-valued mappings, and k-uniform rotundity, Proceedings of the Symposium Pure Mathematics, Vol. 45, part  2, American Mathematical Society, Providence, 1986, pp. 51–64. (1986) Zbl0594.47048MR0843594
  10. 10.1016/S0362-546X(01)00751-9, Nonlinear Anal. 50 (2002), 265–274. (2002) MR1904945DOI10.1016/S0362-546X(01)00751-9
  11. 10.1016/j.na.2004.01.003, Nonlinear Anal. 57 (2004), 23–34. (2004) MR2055985DOI10.1016/j.na.2004.01.003
  12. 10.1006/jmaa.1999.6454, J. Math. Anal. Appl. 237 (1999), 83–92. (1999) MR1708163DOI10.1006/jmaa.1999.6454
  13. Some random fixed point theorems, Fixed Point Theory and Applications, K.-K. Tan (ed.), World Scientific, Singapore, 1992, pp. 334–345. (1992) MR1190049
  14. 10.1137/0315056, SIAM J. Control Optim. 15 (1977), 859–903. (1977) Zbl0407.28006MR0486391DOI10.1137/0315056
  15. 10.1090/S0002-9939-1990-1021908-6, Proc. Amer. Math. Soc. 110 (1990), 395–400. (1990) MR1021908DOI10.1090/S0002-9939-1990-1021908-6
  16. Metric fixed point for multivalued mappings, Dissertationes Math. (Rozprawy Mat.) 389 (2000), 39. (2000) MR1799531
  17. 10.1090/S0002-9939-1993-1123670-8, Proc. Amer. Math. Soc. 117 (1993), 1089–1092. (1993) MR1123670DOI10.1090/S0002-9939-1993-1123670-8
  18. 10.1016/0362-546X(95)00013-L, Nonlinear Anal. 26 (1996), 1301–1311. (1996) MR1376105DOI10.1016/0362-546X(95)00013-L
  19. 10.1016/S0362-546X(99)00227-8, Nonlinear Anal. 43 (2001), 693–706. (2001) Zbl0988.47034MR1808203DOI10.1016/S0362-546X(99)00227-8
  20. 10.1007/BF01111112, Math. Z. 125 (1972), 17–31. (1972) Zbl0216.17302MR0306989DOI10.1007/BF01111112
  21. 10.1016/0362-546X(94)00268-M, Nonlinear Anal. 26 (1996), 1097–1102. (1996) MR1375652DOI10.1016/0362-546X(94)00268-M

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.