Complemented copies of spaces in tensor products
Raffaella Cilia; Joaquín M. Gutiérrez
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 1, page 319-329
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topCilia, Raffaella, and Gutiérrez, Joaquín M.. "Complemented copies of $\ell _p$ spaces in tensor products." Czechoslovak Mathematical Journal 57.1 (2007): 319-329. <http://eudml.org/doc/31131>.
@article{Cilia2007,
abstract = {We give sufficient conditions on Banach spaces $X$ and $Y$ so that their projective tensor product $X\otimes _\pi Y$, their injective tensor product $X\otimes _\epsilon Y$, or the dual $(X\otimes _\pi Y)^*$ contain complemented copies of $\ell _p$.},
author = {Cilia, Raffaella, Gutiérrez, Joaquín M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {$\ell _p$ space; injective and projective tensor product; space; injective and projective tensor product},
language = {eng},
number = {1},
pages = {319-329},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Complemented copies of $\ell _p$ spaces in tensor products},
url = {http://eudml.org/doc/31131},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Cilia, Raffaella
AU - Gutiérrez, Joaquín M.
TI - Complemented copies of $\ell _p$ spaces in tensor products
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 1
SP - 319
EP - 329
AB - We give sufficient conditions on Banach spaces $X$ and $Y$ so that their projective tensor product $X\otimes _\pi Y$, their injective tensor product $X\otimes _\epsilon Y$, or the dual $(X\otimes _\pi Y)^*$ contain complemented copies of $\ell _p$.
LA - eng
KW - $\ell _p$ space; injective and projective tensor product; space; injective and projective tensor product
UR - http://eudml.org/doc/31131
ER -
References
top- New classes of -spaces. Lecture Notes in Math, vol. 889, Springer, Berlin, 1981. (1981) MR0639014
- 10.1007/BF02392189, Acta Math. 152 (1984), 1–48. (1984) MR0736210DOI10.1007/BF02392189
- Unexpected subspaces of tensor products, J. London Math. Soc. 74 (2006), 512–526. (2006) MR2269592
- On Banach spaces such that , Extracta Math. 10 (1995), 27–36. (1995) MR1359589
- Tensor Norms and Operator Ideals, Math. Studies 176, North-Holland, Amsterdam, 1993. (1993) MR1209438
- A survey of results related to the Dunford-Pettis property, In: W. H. Graves (ed.), Proc. Conf. on Integration, Topology and Geometry in Linear Spaces, Chapel Hill 1979, Contemp. Math. 2, 15–60, American Mathematical Society, Providence RI, 1980. Zbl0571.46013MR0621850
- Sequences and Series in Banach Spaces, Graduate Texts in Math. 92, Springer, Berlin, 1984. (1984) MR0737004
- Absolutely Summing Operators, Cambridge Stud. Adv. Math. 43, Cambridge University Press, Cambridge, 1995. (1995) MR1342297
- Vector Measures, Math. Surveys Monographs 15, American Mathematical Society, Providence RI, 1977. (1977) MR0453964
- On Banach spaces for which , Studia Math. 44 (1972), 617–648. (1972) MR0365097
- The Dunford-Pettis property on tensor products, Math. Proc. Cambridge Philos. Soc. 131 (2001), 185–192. (2001) MR1833082
- 10.1017/S0017089505002491, Glasgow Math. J. 47 (2005), 287–290. (2005) MR2203495DOI10.1017/S0017089505002491
- 10.4064/sm-29-3-275-326, Studia Math. 29 (1968), 275–326. (1968) MR0231188DOI10.4064/sm-29-3-275-326
- The -spaces, Israel J. Math. 7 (1969), 325–349. (1969) MR0270119
- 10.4064/cm-32-2-285-289, Colloq. Math. 32 (1975), 285–289. (1975) Zbl0306.46026MR0390794DOI10.4064/cm-32-2-285-289
- 10.2307/2373824, Amer. J. Math. 99 (1977), 362–378. (1977) Zbl0392.54009MR0438113DOI10.2307/2373824
- The Dunford-Pettis property and projective tensor products, Bull. Polish Acad. Sci. Math. 35 (1987), 785–792. (1987) Zbl0656.46057MR0961717
- 10.1007/BF01231879, Invent. Math. 107 (1992), 1–40. (1992) Zbl0788.47022MR1135462DOI10.1007/BF01231879
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.