Adjoint classes of functions in the H 1 sense

Piotr Sworowski

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 2, page 505-522
  • ISSN: 0011-4642

Abstract

top
Using the concept of the H 1 -integral, we consider a similarly defined Stieltjes integral. We prove a Riemann-Lebesgue type theorem for this integral and give examples of adjoint classes of functions.

How to cite

top

Sworowski, Piotr. "Adjoint classes of functions in the $H_1$ sense." Czechoslovak Mathematical Journal 57.2 (2007): 505-522. <http://eudml.org/doc/31144>.

@article{Sworowski2007,
abstract = {Using the concept of the $ \{\mathrm \{H\}\}_1$-integral, we consider a similarly defined Stieltjes integral. We prove a Riemann-Lebesgue type theorem for this integral and give examples of adjoint classes of functions.},
author = {Sworowski, Piotr},
journal = {Czechoslovak Mathematical Journal},
keywords = {Stieltjes integral; Kurzweil integral; Henstock integral; $\{\mathrm \{H\}\}_1$-integral; Riemann-Lebesgue theorem; variational measure; adjoint classes; Stieltjes integral; Kurzweil integral; Henstock integral; Riemann-Lebesgue theorem; variational measure; adjoint classes},
language = {eng},
number = {2},
pages = {505-522},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Adjoint classes of functions in the $H_1$ sense},
url = {http://eudml.org/doc/31144},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Sworowski, Piotr
TI - Adjoint classes of functions in the $H_1$ sense
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 505
EP - 522
AB - Using the concept of the $ {\mathrm {H}}_1$-integral, we consider a similarly defined Stieltjes integral. We prove a Riemann-Lebesgue type theorem for this integral and give examples of adjoint classes of functions.
LA - eng
KW - Stieltjes integral; Kurzweil integral; Henstock integral; ${\mathrm {H}}_1$-integral; Riemann-Lebesgue theorem; variational measure; adjoint classes; Stieltjes integral; Kurzweil integral; Henstock integral; Riemann-Lebesgue theorem; variational measure; adjoint classes
UR - http://eudml.org/doc/31144
ER -

References

top
  1. A pair of adjoint classes of Riemann-Stieltjes integrable functions, Real Anal. Exch. 23 (1998), 235–240. (1998) MR1609806
  2. Adjoint classes of generalized Stieltjes integrable functions, Real Anal. Exch. 24 (1999), 139–148. (1999) MR1691741
  3. Adjoint classes of Lebesgue-Stieltjes integrable functions, Real Anal. Exch. 26 (2001), 421–427. (2001) Zbl1023.26007MR1825521
  4. Cauchy and Harnack extensions for the H 1 -integral, Matimyás Mat. 21 (1998), 28–34. (1998) MR1710941
  5. 10.11650/twjm/1500407260, Taiwanese J.  Math. 4 (2000), 439–445. (2000) MR1779108DOI10.11650/twjm/1500407260
  6. Moore-Smith limits and the Henstock integral, Real Anal. Exch. 24 (1999), 447–455. (1999) MR1691764
  7. 10.11650/twjm/1500558401, Taiwanese J.  Math. 7 (2003), 503–505. (2003) MR1998771DOI10.11650/twjm/1500558401
  8. 10.14321/realanalexch.28.1.0093, Real Anal. Exch. 28 (2003), 93–104. (2003) MR1973971DOI10.14321/realanalexch.28.1.0093
  9. 10.2307/2320958, Am. Math. Mon. 87 (1980), 660–662. (1980) Zbl0446.26005MR0600928DOI10.2307/2320958
  10. Theory of the Integral, G. E. Stechert, New York, 1937. (1937) Zbl0017.30004
  11. On the relation between Young’s and Kurzweil’s concept of Stieltjes integral, Cas. Pest. Mat. 98 (1973), 237–251. (1973) Zbl0266.26006MR0322113
  12. On H 1 -integrable functions, Real Anal. Exch. 27 (2002), 275–286. (2002) Zbl1015.26017MR1887858
  13. Some comments on the H 1 -integral, Real Anal. Exch. 29 (2004), 789–797. (2004) Zbl1078.26008MR2083813
  14. Adjoint classes for generalized Riemann-Stieltjes integrals. 27th Summer Symposium Conference Reports, Opava  2003, Real Anal. Exch. (2003), 41–45. (2003) 
  15. Real Functions. Lecture Notes in Mathematics, Vol. 1170, Springer-Verlag, Berlin, 1985. (1985) MR0818744

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.