Subdirect products of certain varieties of unary algebras

Miroslav Ćirić; Tatjana Petković; Stojan Bogdanović

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 2, page 573-578
  • ISSN: 0011-4642

Abstract

top
J. Płonka in [12] noted that one could expect that the regularization ( K ) of a variety K of unary algebras is a subdirect product of K and the variety D of all discrete algebras (unary semilattices), but is not the case. The purpose of this note is to show that his expectation is fulfilled for those and only those irregular varieties K which are contained in the generalized variety T D i r of the so-called trap-directable algebras.

How to cite

top

Ćirić, Miroslav, Petković, Tatjana, and Bogdanović, Stojan. "Subdirect products of certain varieties of unary algebras." Czechoslovak Mathematical Journal 57.2 (2007): 573-578. <http://eudml.org/doc/31147>.

@article{Ćirić2007,
abstract = {J. Płonka in [12] noted that one could expect that the regularization $\{\mathcal \{R\}\}(K)$ of a variety $\{K\}$ of unary algebras is a subdirect product of $\{K\}$ and the variety $\{D\}$ of all discrete algebras (unary semilattices), but is not the case. The purpose of this note is to show that his expectation is fulfilled for those and only those irregular varieties $\{K\}$ which are contained in the generalized variety $\{TDir\}$ of the so-called trap-directable algebras.},
author = {Ćirić, Miroslav, Petković, Tatjana, Bogdanović, Stojan},
journal = {Czechoslovak Mathematical Journal},
keywords = {unary algebra; subdirect product; variety; directable algebra; unary algebra; subdirect product; variety; directable algebra},
language = {eng},
number = {2},
pages = {573-578},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Subdirect products of certain varieties of unary algebras},
url = {http://eudml.org/doc/31147},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Ćirić, Miroslav
AU - Petković, Tatjana
AU - Bogdanović, Stojan
TI - Subdirect products of certain varieties of unary algebras
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 573
EP - 578
AB - J. Płonka in [12] noted that one could expect that the regularization ${\mathcal {R}}(K)$ of a variety ${K}$ of unary algebras is a subdirect product of ${K}$ and the variety ${D}$ of all discrete algebras (unary semilattices), but is not the case. The purpose of this note is to show that his expectation is fulfilled for those and only those irregular varieties ${K}$ which are contained in the generalized variety ${TDir}$ of the so-called trap-directable algebras.
LA - eng
KW - unary algebra; subdirect product; variety; directable algebra; unary algebra; subdirect product; variety; directable algebra
UR - http://eudml.org/doc/31147
ER -

References

top
  1. Pseudovarieties, generalized varieties and similarly described classes, J. Algebra 92 (1985), 104–115. (1985) Zbl0548.08007MR0772473
  2. On local properties of unary algebras, Algebra Colloquium 10 (2003), 461–478. (2003) MR2013740
  3. Generalized varieties of algebras, Internat. J.  Algebra Comput, Submitted. 
  4. 10.3233/FI-1999-381205, Fundamenta Informaticae 34 (1999), 51–60. (1999) MR1718110DOI10.3233/FI-1999-381205
  5. Directable automata and their generalizations. A survey, Novi Sad J.  Math. 29 (1999), 31–74. (1999) MR1818327
  6. A Course in Universal Algebra, Springer-Verlag, New York, 1981. (1981) MR0648287
  7. Lattices of subautomata and direct sum decompositions of automata, Algebra Colloquium 6 (1999), 71–88. (1999) MR1680653
  8. Algebraic Theory of Automata, Akadémiai Kiadó, Budapest, 1971. (1971) MR0332374
  9. Universal Algebra, 2nd ed, Springer-Verlag, New York-Heidelberg-Berlin, 1979. (1979) MR0538623
  10. Decompositions of automata and transition semigroups, Acta Cybernetica (Szeged) 13 (1998), 385–403. (1998) MR1681152
  11. On the sum of a system of disjoint unary algebras corresponding to a given type, Bull. Acad. Pol. Sci., Ser. Sci. Math. 30 (1982), 305–309. (1982) MR0707740
  12. On the lattice of varieties of unary algebras, Simon Stevin 59 (1985), 353–364. (1985) MR0840857

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.