Exchange rings with stable range one

Huanyin Chen

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 2, page 579-590
  • ISSN: 0011-4642

Abstract

top
We characterize exchange rings having stable range one. An exchange ring R has stable range one if and only if for any regular a R , there exist an e E ( R ) and a u U ( R ) such that a = e + u and a R e R = 0 if and only if for any regular a R , there exist e r . a n n ( a + ) and u U ( R ) such that a = e + u if and only if for any a , b R , R / a R R / b R a R b R .

How to cite

top

Chen, Huanyin. "Exchange rings with stable range one." Czechoslovak Mathematical Journal 57.2 (2007): 579-590. <http://eudml.org/doc/31148>.

@article{Chen2007,
abstract = {We characterize exchange rings having stable range one. An exchange ring $R$ has stable range one if and only if for any regular $a\in R$, there exist an $e\in E(R)$ and a $u\in U(R)$ such that $a=e+u$ and $aR\cap eR=0$ if and only if for any regular $a\in R$, there exist $e\in r.ann(a^+)$ and $u\in U(R)$ such that $a=e+u$ if and only if for any $a,b\in R$, $R/aR\cong R/bR\Longrightarrow aR\cong bR$.},
author = {Chen, Huanyin},
journal = {Czechoslovak Mathematical Journal},
keywords = {exchange ring; stable range one; idempotent; unit; exchange rings; stable range one; idempotents; units},
language = {eng},
number = {2},
pages = {579-590},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Exchange rings with stable range one},
url = {http://eudml.org/doc/31148},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Chen, Huanyin
TI - Exchange rings with stable range one
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 2
SP - 579
EP - 590
AB - We characterize exchange rings having stable range one. An exchange ring $R$ has stable range one if and only if for any regular $a\in R$, there exist an $e\in E(R)$ and a $u\in U(R)$ such that $a=e+u$ and $aR\cap eR=0$ if and only if for any regular $a\in R$, there exist $e\in r.ann(a^+)$ and $u\in U(R)$ such that $a=e+u$ if and only if for any $a,b\in R$, $R/aR\cong R/bR\Longrightarrow aR\cong bR$.
LA - eng
KW - exchange ring; stable range one; idempotent; unit; exchange rings; stable range one; idempotents; units
UR - http://eudml.org/doc/31148
ER -

References

top
  1. 10.1090/S0002-9939-04-07369-1, Proc. Amer. Math. Soc. 132 (2004), 2543–2547. (2004) Zbl1055.16012MR2054778DOI10.1090/S0002-9939-04-07369-1
  2. 10.1090/S0002-9939-96-03473-9, Proc. Amer. Math. Soc. 124 (1996), 3293–3298. (1996) Zbl0865.16007MR1343679DOI10.1090/S0002-9939-96-03473-9
  3. 10.1007/BF02780325, Israel J. Math. 105 (1998), 105–137. (1998) MR1639739DOI10.1007/BF02780325
  4. 10.1081/AGB-100002185, Comm. Algebra 29 (2001), 2293–2295. (2001) MR1837978DOI10.1081/AGB-100002185
  5. 10.1090/S0002-9947-1995-1277100-2, Trans. Amer. Math. Soc. 347 (1995), 3141–3147. (1995) MR1277100DOI10.1090/S0002-9947-1995-1277100-2
  6. 10.1006/jabr.1995.1255, J. Algebra 176 (1995), 480–503. (1995) MR1351620DOI10.1006/jabr.1995.1255
  7. 10.11650/twjm/1500407622, Taiwanese J. Math. 8 (2004), 203–209. (2004) Zbl1059.16005MR2061688DOI10.11650/twjm/1500407622
  8. 10.11650/twjm/1500403880, Taiwanese J. Math. 10 (2006), 881–890. (2006) MR2229628DOI10.11650/twjm/1500403880
  9. Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne, 1979; 2nd ed., Krieger, Malabar, Fl., 1991. Zbl0841.16008MR0533669
  10. 10.1016/0024-3795(82)90248-8, Linear Algebra Appl. 43 (1982), 125–136. (1982) Zbl0493.16015MR0656440DOI10.1016/0024-3795(82)90248-8
  11. 10.2140/pjm.1977.71.449, Pacific J. Math. 71 (1977), 449–461. (1977) MR0442018DOI10.2140/pjm.1977.71.449
  12. 10.1016/j.jalgebra.2004.04.019, J. Algebra 280 (2004), 683–698. (2004) MR2090058DOI10.1016/j.jalgebra.2004.04.019
  13. 10.1142/S0219498804000897, J. Algebra Appl. 3 (2004), 301–343. (2004) Zbl1072.16013MR2096452DOI10.1142/S0219498804000897
  14. 10.1090/S0002-9947-1977-0439876-2, Trans. Amer. Math. Soc. 229 (1977), 269–278. (1977) Zbl0352.16006MR0439876DOI10.1090/S0002-9947-1977-0439876-2
  15. 10.1081/AGB-100002409, Comm. Algebra 29 (2001), 2589–2595. (2001) Zbl0989.16015MR1845131DOI10.1081/AGB-100002409
  16. 10.1090/S0002-9939-98-04397-4, Proc. Amer. Math. Soc. 126 (1998), 61–64. (1998) MR1452816DOI10.1090/S0002-9939-98-04397-4
  17. 10.1016/0022-4049(95)90029-2, J. Pure. Appl. Algebra 98 (1995), 105–109. (1995) Zbl0837.16009MR1317002DOI10.1016/0022-4049(95)90029-2

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.