The continuity of superposition operators on some sequence spaces defined by moduli
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 3, page 777-792
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topKolk, Enno, and Raidjõe, Annemai. "The continuity of superposition operators on some sequence spaces defined by moduli." Czechoslovak Mathematical Journal 57.3 (2007): 777-792. <http://eudml.org/doc/31162>.
@article{Kolk2007,
abstract = {Let $\lambda $ and $\mu $ be solid sequence spaces. For a sequence of modulus functions $\Phi =(\varphi _\{k\})$ let $ \lambda (\Phi )= \lbrace x=(x_\{k\}) \: (\varphi _\{k\}(|x_\{k\}|))\in \lambda \rbrace $. Given another sequence of modulus functions $\Psi =(\psi _\{k\})$, we characterize the continuity of the superposition operators $\{P_\{f\}\}$ from $\lambda (\Phi )$ into $\mu (\Psi )$ for some Banach sequence spaces $\lambda $ and $\mu $ under the assumptions that the moduli $\varphi _\{k\}$$(k \in \mathbb \{N\})$ are unbounded and the topologies on the sequence spaces $\lambda (\Phi )$ and $\mu (\Psi )$ are given by certain F-norms. As applications we consider superposition operators on some multiplier sequence spaces of Maddox type.},
author = {Kolk, Enno, Raidjõe, Annemai},
journal = {Czechoslovak Mathematical Journal},
keywords = {sequence space; superposition operator; modulus function; continuity; sequence space; superposition operator; modulus function; continuity},
language = {eng},
number = {3},
pages = {777-792},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The continuity of superposition operators on some sequence spaces defined by moduli},
url = {http://eudml.org/doc/31162},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Kolk, Enno
AU - Raidjõe, Annemai
TI - The continuity of superposition operators on some sequence spaces defined by moduli
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 777
EP - 792
AB - Let $\lambda $ and $\mu $ be solid sequence spaces. For a sequence of modulus functions $\Phi =(\varphi _{k})$ let $ \lambda (\Phi )= \lbrace x=(x_{k}) \: (\varphi _{k}(|x_{k}|))\in \lambda \rbrace $. Given another sequence of modulus functions $\Psi =(\psi _{k})$, we characterize the continuity of the superposition operators ${P_{f}}$ from $\lambda (\Phi )$ into $\mu (\Psi )$ for some Banach sequence spaces $\lambda $ and $\mu $ under the assumptions that the moduli $\varphi _{k}$$(k \in \mathbb {N})$ are unbounded and the topologies on the sequence spaces $\lambda (\Phi )$ and $\mu (\Psi )$ are given by certain F-norms. As applications we consider superposition operators on some multiplier sequence spaces of Maddox type.
LA - eng
KW - sequence space; superposition operator; modulus function; continuity; sequence space; superposition operator; modulus function; continuity
UR - http://eudml.org/doc/31162
ER -
References
top- Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1990. (1990) MR1066204
- On some new sequence spaces and related matrix transformations, Indian J. Pure Appl. Math. 26 (1995), 1003–1010. (1995) MR1364093
- On superposition operators in spaces, Sibirsk. Mat. Zh. 28 (1987), 86–98. (Russian) (1987) MR0886856
- 10.4153/CJM-1992-020-2, Can. J. Math. 44 (1992), 298–302. (1992) Zbl0777.46008MR1162345DOI10.4153/CJM-1992-020-2
- Some generalized sequence spaces and related matrix transformations, Far East J. Math. Sci. 5 (1997), 243–252. (1997) MR1465589
- Inclusion theorems for some sequence spaces defined by a sequence of moduli, Tartu Ül. Toimetised 960 (1994), 65–72. (1994) MR1337906
- -seminormed sequence spaces defined by a sequence of modulus functions and strong summability, Indian J. Pure Appl. Math. 28 (1997), 1447–1566. (1997) Zbl0920.46002MR1608597
- Superposition operators on sequence spaces defined by -functions, Demonstr. Math. 37 (2004), 159–175. (2004) Zbl1086.47033MR2053112
- Die Räume , , , , , and , Mitt. Math Sem. Giessen 180 (1987), 35–37. (1987) MR0922437
- 10.1017/S0305004100065968, Math. Proc. Camb. Philos. Soc. 100 (1986), 161–166. (1986) Zbl0631.46010MR0838663DOI10.1017/S0305004100065968
- 10.1017/S0305004100066883, Math. Proc. Camb. Philos. Soc. 101 (1987), 523–527. (1987) Zbl0631.46009MR0878899DOI10.1017/S0305004100066883
- Superposition operators of and into , Southeast Asian Bull. Math. 21 (1997), 139–147. (1997) MR1682993
- Continuity of superposition operators on and , Commentat. Math. Univ. Carol. 31 (1990), 529–542. (1990) MR1078487
- Continuité d’un opérateur non linéaire sur certains espaces de suites, C. R. Acad. Sci., Paris 259 (1964), 1287–1290. (1964) Zbl0196.44602MR0166602
- 10.4153/CJM-1973-102-9, Can. J. Math. 25 (1973), 973–978. (1973) Zbl0267.46008MR0338731DOI10.4153/CJM-1973-102-9
- Boundedness and continuity of superposition operator on and , Songklanakarin J. Sci. Technol. 24 (2002), 451–466. (2002)
- On the sequence space defined by a sequence of moduli and on the rate-space, Acta Comment. Univ. Tartu. Math. 1 (1996), 71–74. (1996) MR1711648
- Boundedness of superposition operators on and , Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 249–259. (1997) Zbl0904.47066MR1608173
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.