The continuity of superposition operators on some sequence spaces defined by moduli

Enno Kolk; Annemai Raidjõe

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 3, page 777-792
  • ISSN: 0011-4642

Abstract

top
Let λ and μ be solid sequence spaces. For a sequence of modulus functions Φ = ( ϕ k ) let λ ( Φ ) = { x = ( x k ) ( ϕ k ( | x k | ) ) λ } . Given another sequence of modulus functions Ψ = ( ψ k ) , we characterize the continuity of the superposition operators P f from λ ( Φ ) into μ ( Ψ ) for some Banach sequence spaces λ and μ under the assumptions that the moduli ϕ k ( k ) are unbounded and the topologies on the sequence spaces λ ( Φ ) and μ ( Ψ ) are given by certain F-norms. As applications we consider superposition operators on some multiplier sequence spaces of Maddox type.

How to cite

top

Kolk, Enno, and Raidjõe, Annemai. "The continuity of superposition operators on some sequence spaces defined by moduli." Czechoslovak Mathematical Journal 57.3 (2007): 777-792. <http://eudml.org/doc/31162>.

@article{Kolk2007,
abstract = {Let $\lambda $ and $\mu $ be solid sequence spaces. For a sequence of modulus functions $\Phi =(\varphi _\{k\})$ let $ \lambda (\Phi )= \lbrace x=(x_\{k\}) \: (\varphi _\{k\}(|x_\{k\}|))\in \lambda \rbrace $. Given another sequence of modulus functions $\Psi =(\psi _\{k\})$, we characterize the continuity of the superposition operators $\{P_\{f\}\}$ from $\lambda (\Phi )$ into $\mu (\Psi )$ for some Banach sequence spaces $\lambda $ and $\mu $ under the assumptions that the moduli $\varphi _\{k\}$$(k \in \mathbb \{N\})$ are unbounded and the topologies on the sequence spaces $\lambda (\Phi )$ and $\mu (\Psi )$ are given by certain F-norms. As applications we consider superposition operators on some multiplier sequence spaces of Maddox type.},
author = {Kolk, Enno, Raidjõe, Annemai},
journal = {Czechoslovak Mathematical Journal},
keywords = {sequence space; superposition operator; modulus function; continuity; sequence space; superposition operator; modulus function; continuity},
language = {eng},
number = {3},
pages = {777-792},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {The continuity of superposition operators on some sequence spaces defined by moduli},
url = {http://eudml.org/doc/31162},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Kolk, Enno
AU - Raidjõe, Annemai
TI - The continuity of superposition operators on some sequence spaces defined by moduli
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 777
EP - 792
AB - Let $\lambda $ and $\mu $ be solid sequence spaces. For a sequence of modulus functions $\Phi =(\varphi _{k})$ let $ \lambda (\Phi )= \lbrace x=(x_{k}) \: (\varphi _{k}(|x_{k}|))\in \lambda \rbrace $. Given another sequence of modulus functions $\Psi =(\psi _{k})$, we characterize the continuity of the superposition operators ${P_{f}}$ from $\lambda (\Phi )$ into $\mu (\Psi )$ for some Banach sequence spaces $\lambda $ and $\mu $ under the assumptions that the moduli $\varphi _{k}$$(k \in \mathbb {N})$ are unbounded and the topologies on the sequence spaces $\lambda (\Phi )$ and $\mu (\Psi )$ are given by certain F-norms. As applications we consider superposition operators on some multiplier sequence spaces of Maddox type.
LA - eng
KW - sequence space; superposition operator; modulus function; continuity; sequence space; superposition operator; modulus function; continuity
UR - http://eudml.org/doc/31162
ER -

References

top
  1. Nonlinear Superposition Operators, Cambridge University Press, Cambridge, 1990. (1990) MR1066204
  2. On some new sequence spaces and related matrix transformations, Indian J.  Pure Appl. Math. 26 (1995), 1003–1010. (1995) MR1364093
  3. On superposition operators in p   spaces, Sibirsk. Mat. Zh. 28 (1987), 86–98. (Russian) (1987) MR0886856
  4. 10.4153/CJM-1992-020-2, Can. J.  Math. 44 (1992), 298–302. (1992) Zbl0777.46008MR1162345DOI10.4153/CJM-1992-020-2
  5. Some generalized sequence spaces and related matrix transformations, Far East J.  Math. Sci. 5 (1997), 243–252. (1997) MR1465589
  6. Inclusion theorems for some sequence spaces defined by a sequence of moduli, Tartu Ül.  Toimetised 960 (1994), 65–72. (1994) MR1337906
  7. F -seminormed sequence spaces defined by a sequence of modulus functions and strong summability, Indian J.  Pure Appl. Math. 28 (1997), 1447–1566. (1997) Zbl0920.46002MR1608597
  8. Superposition operators on sequence spaces defined by  ϕ -functions, Demonstr. Math. 37 (2004), 159–175. (2004) Zbl1086.47033MR2053112
  9. Die Räume  ( p ) , ( p ) , c ( p ) , c 0 ( p ) , w ( p ) , w 0 ( p ) and w ( p ) , Mitt. Math Sem. Giessen 180 (1987), 35–37. (1987) MR0922437
  10. 10.1017/S0305004100065968, Math. Proc. Camb. Philos. Soc. 100 (1986), 161–166. (1986) Zbl0631.46010MR0838663DOI10.1017/S0305004100065968
  11. 10.1017/S0305004100066883, Math. Proc. Camb. Philos. Soc. 101 (1987), 523–527. (1987) Zbl0631.46009MR0878899DOI10.1017/S0305004100066883
  12. Superposition operators of  p and c 0 into  q ( 1 p , q < ) , Southeast Asian Bull. Math. 21 (1997), 139–147. (1997) MR1682993
  13. Continuity of superposition operators on  w 0 and W 0 , Commentat. Math. Univ. Carol. 31 (1990), 529–542. (1990) MR1078487
  14. Continuité d’un opérateur non linéaire sur certains espaces de suites, C.  R.  Acad. Sci., Paris 259 (1964), 1287–1290. (1964) Zbl0196.44602MR0166602
  15. 10.4153/CJM-1973-102-9, Can. J.  Math. 25 (1973), 973–978. (1973) Zbl0267.46008MR0338731DOI10.4153/CJM-1973-102-9
  16. Boundedness and continuity of superposition operator on  E r ( p ) and F r ( p ) , Songklanakarin J.  Sci. Technol. 24 (2002), 451–466. (2002) 
  17. On the sequence space defined by a sequence of moduli and on the rate-space, Acta Comment. Univ. Tartu. Math. 1 (1996), 71–74. (1996) MR1711648
  18. Boundedness of superposition operators on  E r and F r , Ann. Soc. Math. Pol., Ser. I, Commentat. Math. 37 (1997), 249–259. (1997) Zbl0904.47066MR1608173

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.