Real hypersurfaces in complex space forms concerned with the local symmetry

Seon Mi Lyu; Juan de Dios Pérez; Young Jin Suh

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 3, page 885-905
  • ISSN: 0011-4642

Abstract

top
This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface M in complex space form M m ( 4 ϵ ) . In the second, we give a complete classification of real hypersurfaces in M m ( 4 ϵ ) which satisfy the above geometric facts.

How to cite

top

Lyu, Seon Mi, Pérez, Juan de Dios, and Suh, Young Jin. "Real hypersurfaces in complex space forms concerned with the local symmetry." Czechoslovak Mathematical Journal 57.3 (2007): 885-905. <http://eudml.org/doc/31170>.

@article{Lyu2007,
abstract = {This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface $M$ in complex space form $M_m(4\epsilon )$. In the second, we give a complete classification of real hypersurfaces in $M_m(4\epsilon )$ which satisfy the above geometric facts.},
author = {Lyu, Seon Mi, Pérez, Juan de Dios, Suh, Young Jin},
journal = {Czechoslovak Mathematical Journal},
keywords = {real hypersurfaces; local symmetry; derivations; Kulkarni-Nomizu product; real hypersurfaces; local symmetry; derivations; Kulkarni-Nomizu product},
language = {eng},
number = {3},
pages = {885-905},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Real hypersurfaces in complex space forms concerned with the local symmetry},
url = {http://eudml.org/doc/31170},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Lyu, Seon Mi
AU - Pérez, Juan de Dios
AU - Suh, Young Jin
TI - Real hypersurfaces in complex space forms concerned with the local symmetry
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 885
EP - 905
AB - This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface $M$ in complex space form $M_m(4\epsilon )$. In the second, we give a complete classification of real hypersurfaces in $M_m(4\epsilon )$ which satisfy the above geometric facts.
LA - eng
KW - real hypersurfaces; local symmetry; derivations; Kulkarni-Nomizu product; real hypersurfaces; local symmetry; derivations; Kulkarni-Nomizu product
UR - http://eudml.org/doc/31170
ER -

References

top
  1. Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J.  Reine Angew. Math. 395 (1989), 132–141. (1989) MR0983062
  2. Real hypersurfaces in quaternionic space forms, J.  Reine Angew. Math. 419 (1991), 9–26. (1991) Zbl0718.53017MR1116915
  3. 10.1007/s006050050018, Monatsh. Math. 127 (1999), 1–14. (1999) MR1666307DOI10.1007/s006050050018
  4. 10.1007/s00605-001-0494-4, Monatsh. Math. 137 (2002), 87–98. (2002) MR1937621DOI10.1007/s00605-001-0494-4
  5. Real submanifolds of a Kaehler manifold, Algebras Groups Geom. 1 (1984 1984), 176–212. (1984 1984) MR0760492
  6. On real hypersurfaces of a complex space form, Math. J.  Okayama Univ. 32 (1990), 207–221. (1990) MR1112028
  7. 10.4153/CMB-1994-035-8, Canad. Math. Bull. 37 (1994), 238–244. (1994) MR1275710DOI10.4153/CMB-1994-035-8
  8. Foundations of Differential Geometry, Interscience, New York-London-Sydney, 1963. (1963) MR0152974
  9. 10.1090/S0002-9947-1986-0837803-2, Trans. Amer. Math. Soc. 296 (1986), 137–149. (1986) Zbl0597.53021MR0837803DOI10.1090/S0002-9947-1986-0837803-2
  10. On real hypersurfaces of complex projective space  II, Tsukuba J.  Math. 15 (1994), 547–561. (1994) MR1138204
  11. 10.1023/A:1020819214682, Acta Math. Hungarica 97 (2002), 145–172. (2002) MR1932801DOI10.1023/A:1020819214682
  12. On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976 1976), 529–540. (1976 1976) MR0407772
  13. 10.2969/jmsj/03730515, J.  Math. Soc. Japan 37 (1985), 515–535. (1985) Zbl0554.53021MR0792990DOI10.2969/jmsj/03730515
  14. 10.2969/jmsj/1191418756, J.  Math. Soc. Japan 55 (2003), 915–938. (2003) MR2003752DOI10.2969/jmsj/1191418756
  15. 10.1007/BF00164402, Geom. Dedicata 20 (1986), 245–261. (1986) MR0833849DOI10.1007/BF00164402
  16. 10.1090/S0002-9947-1975-0377787-X, Trans. Amer. Math. Soc. 212 (1975), 355–364. (1975) Zbl0288.53043MR0377787DOI10.1090/S0002-9947-1975-0377787-X
  17. 10.1307/mmj/1028999604, Michigan Math.  J. 13 (1966), 459–469. (1966) MR0200865DOI10.1307/mmj/1028999604
  18. 10.1023/A:1022881510000, Czech. Math.  J. 50(125) (2000), 531–537. (2000) MR1777474DOI10.1023/A:1022881510000
  19. 10.1017/S0017089502001015, Glasgow Math.  J. 45 (2003), 51–65. (2003) MR1972696DOI10.1017/S0017089502001015
  20. 10.1016/S0926-2245(97)00003-X, Diff. Geom. Appl. 7 (1997), 211–217. (1997) MR1480534DOI10.1016/S0926-2245(97)00003-X
  21. Classification of real hypersurfaces in complex hyperbolic space in terms of constant φ -holomorphic sectional curvatures, Kyungpook Math.  J. 35 (1996), 801–819. (1996) MR1678228
  22. A characterization of ruled real hypersurfaces in P m ( ) , J.  Korean Math. Soc. 29 (1992), 351–359. (1992) MR1180662
  23. 10.2748/tmj/1178227424, Tohoku Math.  J. 43 (1991), 501–507. (1991) MR1133864DOI10.2748/tmj/1178227424
  24. On homogeneous real hypersurfaces of a complex projective space, Osaka J.  Math. 10 (1973), 495–506. (1973) MR0336660

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.