Real hypersurfaces in complex space forms concerned with the local symmetry
Seon Mi Lyu; Juan de Dios Pérez; Young Jin Suh
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 3, page 885-905
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLyu, Seon Mi, Pérez, Juan de Dios, and Suh, Young Jin. "Real hypersurfaces in complex space forms concerned with the local symmetry." Czechoslovak Mathematical Journal 57.3 (2007): 885-905. <http://eudml.org/doc/31170>.
@article{Lyu2007,
abstract = {This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface $M$ in complex space form $M_m(4\epsilon )$. In the second, we give a complete classification of real hypersurfaces in $M_m(4\epsilon )$ which satisfy the above geometric facts.},
author = {Lyu, Seon Mi, Pérez, Juan de Dios, Suh, Young Jin},
journal = {Czechoslovak Mathematical Journal},
keywords = {real hypersurfaces; local symmetry; derivations; Kulkarni-Nomizu product; real hypersurfaces; local symmetry; derivations; Kulkarni-Nomizu product},
language = {eng},
number = {3},
pages = {885-905},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Real hypersurfaces in complex space forms concerned with the local symmetry},
url = {http://eudml.org/doc/31170},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Lyu, Seon Mi
AU - Pérez, Juan de Dios
AU - Suh, Young Jin
TI - Real hypersurfaces in complex space forms concerned with the local symmetry
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 885
EP - 905
AB - This paper consists of two parts. In the first, we find some geometric conditions derived from the local symmetry of the inverse image by the Hopf fibration of a real hypersurface $M$ in complex space form $M_m(4\epsilon )$. In the second, we give a complete classification of real hypersurfaces in $M_m(4\epsilon )$ which satisfy the above geometric facts.
LA - eng
KW - real hypersurfaces; local symmetry; derivations; Kulkarni-Nomizu product; real hypersurfaces; local symmetry; derivations; Kulkarni-Nomizu product
UR - http://eudml.org/doc/31170
ER -
References
top- Real hypersurfaces with constant principal curvatures in a complex hyperbolic space, J. Reine Angew. Math. 395 (1989), 132–141. (1989) MR0983062
- Real hypersurfaces in quaternionic space forms, J. Reine Angew. Math. 419 (1991), 9–26. (1991) Zbl0718.53017MR1116915
- 10.1007/s006050050018, Monatsh. Math. 127 (1999), 1–14. (1999) MR1666307DOI10.1007/s006050050018
- 10.1007/s00605-001-0494-4, Monatsh. Math. 137 (2002), 87–98. (2002) MR1937621DOI10.1007/s00605-001-0494-4
- Real submanifolds of a Kaehler manifold, Algebras Groups Geom. 1 (1984 1984), 176–212. (1984 1984) MR0760492
- On real hypersurfaces of a complex space form, Math. J. Okayama Univ. 32 (1990), 207–221. (1990) MR1112028
- 10.4153/CMB-1994-035-8, Canad. Math. Bull. 37 (1994), 238–244. (1994) MR1275710DOI10.4153/CMB-1994-035-8
- Foundations of Differential Geometry, Interscience, New York-London-Sydney, 1963. (1963) MR0152974
- 10.1090/S0002-9947-1986-0837803-2, Trans. Amer. Math. Soc. 296 (1986), 137–149. (1986) Zbl0597.53021MR0837803DOI10.1090/S0002-9947-1986-0837803-2
- On real hypersurfaces of complex projective space II, Tsukuba J. Math. 15 (1994), 547–561. (1994) MR1138204
- 10.1023/A:1020819214682, Acta Math. Hungarica 97 (2002), 145–172. (2002) MR1932801DOI10.1023/A:1020819214682
- On real hypersurfaces of a complex projective space, J. Math. Soc. Japan 28 (1976 1976), 529–540. (1976 1976) MR0407772
- 10.2969/jmsj/03730515, J. Math. Soc. Japan 37 (1985), 515–535. (1985) Zbl0554.53021MR0792990DOI10.2969/jmsj/03730515
- 10.2969/jmsj/1191418756, J. Math. Soc. Japan 55 (2003), 915–938. (2003) MR2003752DOI10.2969/jmsj/1191418756
- 10.1007/BF00164402, Geom. Dedicata 20 (1986), 245–261. (1986) MR0833849DOI10.1007/BF00164402
- 10.1090/S0002-9947-1975-0377787-X, Trans. Amer. Math. Soc. 212 (1975), 355–364. (1975) Zbl0288.53043MR0377787DOI10.1090/S0002-9947-1975-0377787-X
- 10.1307/mmj/1028999604, Michigan Math. J. 13 (1966), 459–469. (1966) MR0200865DOI10.1307/mmj/1028999604
- 10.1023/A:1022881510000, Czech. Math. J. 50(125) (2000), 531–537. (2000) MR1777474DOI10.1023/A:1022881510000
- 10.1017/S0017089502001015, Glasgow Math. J. 45 (2003), 51–65. (2003) MR1972696DOI10.1017/S0017089502001015
- 10.1016/S0926-2245(97)00003-X, Diff. Geom. Appl. 7 (1997), 211–217. (1997) MR1480534DOI10.1016/S0926-2245(97)00003-X
- Classification of real hypersurfaces in complex hyperbolic space in terms of constant -holomorphic sectional curvatures, Kyungpook Math. J. 35 (1996), 801–819. (1996) MR1678228
- A characterization of ruled real hypersurfaces in , J. Korean Math. Soc. 29 (1992), 351–359. (1992) MR1180662
- 10.2748/tmj/1178227424, Tohoku Math. J. 43 (1991), 501–507. (1991) MR1133864DOI10.2748/tmj/1178227424
- On homogeneous real hypersurfaces of a complex projective space, Osaka J. Math. 10 (1973), 495–506. (1973) MR0336660
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.