A class of integral operators on mixed norm spaces in the unit ball

Songxiao Li

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 3, page 1013-1023
  • ISSN: 0011-4642

Abstract

top
This article provided some sufficient or necessary conditions for a class of integral operators to be bounded on mixed norm spaces in the unit ball.

How to cite

top

Li, Songxiao. "A class of integral operators on mixed norm spaces in the unit ball." Czechoslovak Mathematical Journal 57.3 (2007): 1013-1023. <http://eudml.org/doc/31178>.

@article{Li2007,
abstract = {This article provided some sufficient or necessary conditions for a class of integral operators to be bounded on mixed norm spaces in the unit ball.},
author = {Li, Songxiao},
journal = {Czechoslovak Mathematical Journal},
keywords = {integral operator; mixed norm space; boundedness; integral operator; mixed norm space; boundedness},
language = {eng},
number = {3},
pages = {1013-1023},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {A class of integral operators on mixed norm spaces in the unit ball},
url = {http://eudml.org/doc/31178},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Li, Songxiao
TI - A class of integral operators on mixed norm spaces in the unit ball
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 1013
EP - 1023
AB - This article provided some sufficient or necessary conditions for a class of integral operators to be bounded on mixed norm spaces in the unit ball.
LA - eng
KW - integral operator; mixed norm space; boundedness; integral operator; mixed norm space; boundedness
UR - http://eudml.org/doc/31178
ER -

References

top
  1. 10.1215/S0012-7094-61-02828-9, Duke Math.  J. 28 (1961), 301–324. (1961) MR0126155DOI10.1215/S0012-7094-61-02828-9
  2. 10.1090/S0002-9939-1990-0991692-0, Proc. Am. Math. Soc. 108 (1990), 127–136. (1990) Zbl0684.47022MR0991692DOI10.1090/S0002-9939-1990-0991692-0
  3. Projections on spaces of holomorphic functions in balls, Indiana Univ. Math.  J. 24 (1974), 593–602. (1974) MR0357866
  4. 10.1090/S0002-9939-1988-0948149-3, Proc. Am. Math. Soc. 104 (1988), 1171–1180. (1988) MR0948149DOI10.1090/S0002-9939-1988-0948149-3
  5. A new look at a theorem of Forelli and Rudin, Indiana Univ. Math.  J. 28 (1979), 495–499. (1979) Zbl0412.41023MR0529680
  6. 10.1007/s00020-005-1411-3, Integr. Equ. Oper. Theory 56 (2006), 71–82. (2006) MR2256998DOI10.1007/s00020-005-1411-3
  7. 10.1090/S0002-9939-02-06332-3, Proc. Am. Math. Soc. 130 (2002), 2363–2367. (2002) MR1897461DOI10.1090/S0002-9939-02-06332-3
  8. Bergman type operator on mixed norm spaces with applications, Chin. Ann. Math., Ser. B 18 (1997), 265–276. (1997) MR1480002
  9. 10.1007/BF02876029, Sci. China, Ser.  A 42 (1999), 1286–1291. (1999) MR1749939DOI10.1007/BF02876029
  10. 10.1007/BF02879040, Sci. China, Ser.  A 41 (1998), 225–231. (1998) MR1621125DOI10.1007/BF02879040
  11. Bounded projections, duality and multipliers in spaces of analytic functions, Trans. Am. Math. Soc. 162 (1971), 287–302. (1971) MR0283559
  12. The Bergman spaces, the Bloch spaces and Gleason’s problem, Trans. Am. Math. Soc. 309 (1988), 253–268. (1988) MR0931533
  13. Spaces of Holomorphic Functions in the Unit Ball. Graduate Texts in Mathematics  226, Springer-Verlag, New York, 2005. (2005) MR2115155

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.