Hypercyclicity of special operators on Hilbert function spaces

Bahmann Yousefi; S. Haghkhah

Czechoslovak Mathematical Journal (2007)

  • Volume: 57, Issue: 3, page 1035-1041
  • ISSN: 0011-4642

Abstract

top
In this paper we give some sufficient conditions for the adjoint of a weighted composition operator on a Hilbert space of analytic functions to be hypercyclic.

How to cite

top

Yousefi, Bahmann, and Haghkhah, S.. "Hypercyclicity of special operators on Hilbert function spaces." Czechoslovak Mathematical Journal 57.3 (2007): 1035-1041. <http://eudml.org/doc/31180>.

@article{Yousefi2007,
abstract = {In this paper we give some sufficient conditions for the adjoint of a weighted composition operator on a Hilbert space of analytic functions to be hypercyclic.},
author = {Yousefi, Bahmann, Haghkhah, S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {multiplier; orbit; hypercyclic vector; multiplication operator; weighted composition operator; multiplier; orbit; hypercyclic vector; multiplication operator},
language = {eng},
number = {3},
pages = {1035-1041},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hypercyclicity of special operators on Hilbert function spaces},
url = {http://eudml.org/doc/31180},
volume = {57},
year = {2007},
}

TY - JOUR
AU - Yousefi, Bahmann
AU - Haghkhah, S.
TI - Hypercyclicity of special operators on Hilbert function spaces
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 1035
EP - 1041
AB - In this paper we give some sufficient conditions for the adjoint of a weighted composition operator on a Hilbert space of analytic functions to be hypercyclic.
LA - eng
KW - multiplier; orbit; hypercyclic vector; multiplication operator; weighted composition operator; multiplier; orbit; hypercyclic vector; multiplication operator
UR - http://eudml.org/doc/31180
ER -

References

top
  1. Three problems on hypercyclic operators, PhD. Thesis, Kent State University, 1998. (1998) 
  2. 10.1006/jfan.1999.3437, J.  Funct. Anal. 167 (1999), 94–112. (1999) MR1710637DOI10.1006/jfan.1999.3437
  3. 10.1307/mmj/1029005709, Mich. Math. J. 44 (1997), 345–353. (1997) Zbl0896.47020MR1460419DOI10.1307/mmj/1029005709
  4. Cyclic Phenomena for Composition Operators. Memoirs of the Am. Math. Soc.  125, Am. Math. Soc., Providence, 1997. (1997) MR1396955
  5. 10.1090/S0002-9947-00-02648-9, Trans. Am. Math. Soc 352 (2000), 5293–5316. (2000) MR1778507DOI10.1090/S0002-9947-00-02648-9
  6. 10.1090/S0002-9939-1987-0884467-4, Proc. Am. Math. Soc. 100 (1987), 281–288. (1987) MR0884467DOI10.1090/S0002-9939-1987-0884467-4
  7. 10.1016/0022-1236(91)90078-J, J. Funct. Anal. 98 (1991), 229–269. (1991) MR1111569DOI10.1016/0022-1236(91)90078-J
  8. Universal families and hypercyclic operators, Bull. Am. Math. Soc. 35 (1999), 345–381. (1999) MR1685272
  9. 10.1016/0022-1236(91)90058-D, J. Funct. Anal. 99 (1991), 179–190. (1991) Zbl0758.47016MR1120920DOI10.1016/0022-1236(91)90058-D
  10. Invariant closed sets for linear operators, Thesis, University of Toronto, Toronto, 1982. (1982) 
  11. 10.1007/BF02765019, Isr. J.  Math. 63 (1988), 1–40. (1988) MR0959046DOI10.1007/BF02765019
  12. 10.4064/sm-32-1-17-22, Stud. Math. 32 (1969), 17–22. (1969) Zbl0174.44203MR0241956DOI10.4064/sm-32-1-17-22
  13. 10.1090/S0002-9947-1995-1249890-6, Trans. Am. Math. Soc. 347 (1995), 993–1004. (1995) Zbl0822.47030MR1249890DOI10.1090/S0002-9947-1995-1249890-6
  14. 10.1512/iumj.1971.20.20062, Indiana Univ. Math. J. 20 (1971), 777–788. (1971) MR0287352DOI10.1512/iumj.1971.20.20062
  15. 10.1007/BF03322879, Result. Math. 46 (2004), 174–180. (2004) MR2093472DOI10.1007/BF03322879
  16. 10.1007/BF02829627, Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 209–216. (2005) MR2142466DOI10.1007/BF02829627

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.