Hypercyclicity of special operators on Hilbert function spaces
Czechoslovak Mathematical Journal (2007)
- Volume: 57, Issue: 3, page 1035-1041
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topYousefi, Bahmann, and Haghkhah, S.. "Hypercyclicity of special operators on Hilbert function spaces." Czechoslovak Mathematical Journal 57.3 (2007): 1035-1041. <http://eudml.org/doc/31180>.
@article{Yousefi2007,
abstract = {In this paper we give some sufficient conditions for the adjoint of a weighted composition operator on a Hilbert space of analytic functions to be hypercyclic.},
author = {Yousefi, Bahmann, Haghkhah, S.},
journal = {Czechoslovak Mathematical Journal},
keywords = {multiplier; orbit; hypercyclic vector; multiplication operator; weighted composition operator; multiplier; orbit; hypercyclic vector; multiplication operator},
language = {eng},
number = {3},
pages = {1035-1041},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Hypercyclicity of special operators on Hilbert function spaces},
url = {http://eudml.org/doc/31180},
volume = {57},
year = {2007},
}
TY - JOUR
AU - Yousefi, Bahmann
AU - Haghkhah, S.
TI - Hypercyclicity of special operators on Hilbert function spaces
JO - Czechoslovak Mathematical Journal
PY - 2007
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 57
IS - 3
SP - 1035
EP - 1041
AB - In this paper we give some sufficient conditions for the adjoint of a weighted composition operator on a Hilbert space of analytic functions to be hypercyclic.
LA - eng
KW - multiplier; orbit; hypercyclic vector; multiplication operator; weighted composition operator; multiplier; orbit; hypercyclic vector; multiplication operator
UR - http://eudml.org/doc/31180
ER -
References
top- Three problems on hypercyclic operators, PhD. Thesis, Kent State University, 1998. (1998)
- 10.1006/jfan.1999.3437, J. Funct. Anal. 167 (1999), 94–112. (1999) MR1710637DOI10.1006/jfan.1999.3437
- 10.1307/mmj/1029005709, Mich. Math. J. 44 (1997), 345–353. (1997) Zbl0896.47020MR1460419DOI10.1307/mmj/1029005709
- Cyclic Phenomena for Composition Operators. Memoirs of the Am. Math. Soc. 125, Am. Math. Soc., Providence, 1997. (1997) MR1396955
- 10.1090/S0002-9947-00-02648-9, Trans. Am. Math. Soc 352 (2000), 5293–5316. (2000) MR1778507DOI10.1090/S0002-9947-00-02648-9
- 10.1090/S0002-9939-1987-0884467-4, Proc. Am. Math. Soc. 100 (1987), 281–288. (1987) MR0884467DOI10.1090/S0002-9939-1987-0884467-4
- 10.1016/0022-1236(91)90078-J, J. Funct. Anal. 98 (1991), 229–269. (1991) MR1111569DOI10.1016/0022-1236(91)90078-J
- Universal families and hypercyclic operators, Bull. Am. Math. Soc. 35 (1999), 345–381. (1999) MR1685272
- 10.1016/0022-1236(91)90058-D, J. Funct. Anal. 99 (1991), 179–190. (1991) Zbl0758.47016MR1120920DOI10.1016/0022-1236(91)90058-D
- Invariant closed sets for linear operators, Thesis, University of Toronto, Toronto, 1982. (1982)
- 10.1007/BF02765019, Isr. J. Math. 63 (1988), 1–40. (1988) MR0959046DOI10.1007/BF02765019
- 10.4064/sm-32-1-17-22, Stud. Math. 32 (1969), 17–22. (1969) Zbl0174.44203MR0241956DOI10.4064/sm-32-1-17-22
- 10.1090/S0002-9947-1995-1249890-6, Trans. Am. Math. Soc. 347 (1995), 993–1004. (1995) Zbl0822.47030MR1249890DOI10.1090/S0002-9947-1995-1249890-6
- 10.1512/iumj.1971.20.20062, Indiana Univ. Math. J. 20 (1971), 777–788. (1971) MR0287352DOI10.1512/iumj.1971.20.20062
- 10.1007/BF03322879, Result. Math. 46 (2004), 174–180. (2004) MR2093472DOI10.1007/BF03322879
- 10.1007/BF02829627, Proc. Indian Acad. Sci. (Math. Sci.) 115 (2005), 209–216. (2005) MR2142466DOI10.1007/BF02829627
Citations in EuDML Documents
topNotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.