Strong separativity over exchange rings
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 2, page 417-428
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topChen, Huanyin. "Strong separativity over exchange rings." Czechoslovak Mathematical Journal 58.2 (2008): 417-428. <http://eudml.org/doc/31218>.
@article{Chen2008,
abstract = {An exchange ring $R$ is strongly separative provided that for all finitely generated projective right $R$-modules $A$ and $B$, $A\oplus A\cong A \oplus B\Rightarrow A\cong B$. We prove that an exchange ring $R$ is strongly separative if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exist $u,v\in S$ such that $au=bv$ and $Su+Sv=S$ if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exists a right invertible matrix $\begin\{pmatrix\} a&b\\ *&* \end\{pmatrix\} \in M_2(S)$. The dual assertions are also proved.},
author = {Chen, Huanyin},
journal = {Czechoslovak Mathematical Journal},
keywords = {strong separativity; exchange ring; regular ring; strong separativity; exchange rings; regular rings},
language = {eng},
number = {2},
pages = {417-428},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong separativity over exchange rings},
url = {http://eudml.org/doc/31218},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Chen, Huanyin
TI - Strong separativity over exchange rings
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 417
EP - 428
AB - An exchange ring $R$ is strongly separative provided that for all finitely generated projective right $R$-modules $A$ and $B$, $A\oplus A\cong A \oplus B\Rightarrow A\cong B$. We prove that an exchange ring $R$ is strongly separative if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exist $u,v\in S$ such that $au=bv$ and $Su+Sv=S$ if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exists a right invertible matrix $\begin{pmatrix} a&b\\ *&* \end{pmatrix} \in M_2(S)$. The dual assertions are also proved.
LA - eng
KW - strong separativity; exchange ring; regular ring; strong separativity; exchange rings; regular rings
UR - http://eudml.org/doc/31218
ER -
References
top- 10.1006/jabr.1997.7116, J. Algebra 197 (1997), 409–423. (1997) Zbl0890.16003MR1483771DOI10.1006/jabr.1997.7116
- Diagonalization of matrices over regular rings, Linear Algebra Appl. 265 (1997), 147–163. (1997) MR1466896
- 10.1007/BF02780325, Isr. J. Math. 105 (1998), 105–137. (1998) MR1639739DOI10.1007/BF02780325
- Cancellation of projective modules over regular rings with comparability, J. Pure Appl. Algebra 107 (1996), 19–38. (1996) MR1377653
- 10.1006/jabr.1997.7221, J. Algebra 200 (1998), 207–224. (1998) Zbl0899.16002MR1603271DOI10.1006/jabr.1997.7221
- 10.1142/S0219498804000770, J. Algebra Appl. 3 (2004), 207–217. (2004) Zbl1072.16004MR2069262DOI10.1142/S0219498804000770
- Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne, 1979; Krieger, Malabar (2nd edition), 1991. (1979; Krieger, Malabar (2nd edition), 1991) Zbl0411.16007MR0533669
- Von Neumann regular rings and direct sum decomposition problems, Abelian Groups and Modules, Kluwer, Dordrecht, 1995, pp. 249–255. (1995) Zbl0841.16008MR1378203
- 10.1016/0022-4049(82)90056-1, J. Pure Appl. Algebra 24 (1982), 25–40. (1982) MR0647578DOI10.1016/0022-4049(82)90056-1
- 10.1080/00927879708825962, Commun. Algebra 25 (1997), 1917–1918. (1997) Zbl0883.16003MR1446139DOI10.1080/00927879708825962
- Separative cancellation and multiple isomorphism in torsion-free Abelian groups, J. Algebra 221 (1999), 536–550. (1999) MR1728395
- 10.1080/00927879608825721, Commun. Algebra 24 (1996), 2915–2929. (1996) Zbl0859.16001MR1396864DOI10.1080/00927879608825721
- Rings Close to Regular, Kluwer, Dordrecht, 2002. (2002) Zbl1120.16012MR1958361
- 10.1007/s00013-005-1363-5, Arch. Math. 85 (2005), 327–334. (2005) MR2174230DOI10.1007/s00013-005-1363-5
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.