Strong separativity over exchange rings

Huanyin Chen

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 2, page 417-428
  • ISSN: 0011-4642

Abstract

top
An exchange ring R is strongly separative provided that for all finitely generated projective right R -modules A and B , A A A B A B . We prove that an exchange ring R is strongly separative if and only if for any corner S of R , a S + b S = S implies that there exist u , v S such that a u = b v and S u + S v = S if and only if for any corner S of R , a S + b S = S implies that there exists a right invertible matrix a b * M 2 ( S ) . The dual assertions are also proved.

How to cite

top

Chen, Huanyin. "Strong separativity over exchange rings." Czechoslovak Mathematical Journal 58.2 (2008): 417-428. <http://eudml.org/doc/31218>.

@article{Chen2008,
abstract = {An exchange ring $R$ is strongly separative provided that for all finitely generated projective right $R$-modules $A$ and $B$, $A\oplus A\cong A \oplus B\Rightarrow A\cong B$. We prove that an exchange ring $R$ is strongly separative if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exist $u,v\in S$ such that $au=bv$ and $Su+Sv=S$ if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exists a right invertible matrix $\begin\{pmatrix\} a&b\\ *&* \end\{pmatrix\} \in M_2(S)$. The dual assertions are also proved.},
author = {Chen, Huanyin},
journal = {Czechoslovak Mathematical Journal},
keywords = {strong separativity; exchange ring; regular ring; strong separativity; exchange rings; regular rings},
language = {eng},
number = {2},
pages = {417-428},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strong separativity over exchange rings},
url = {http://eudml.org/doc/31218},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Chen, Huanyin
TI - Strong separativity over exchange rings
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 417
EP - 428
AB - An exchange ring $R$ is strongly separative provided that for all finitely generated projective right $R$-modules $A$ and $B$, $A\oplus A\cong A \oplus B\Rightarrow A\cong B$. We prove that an exchange ring $R$ is strongly separative if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exist $u,v\in S$ such that $au=bv$ and $Su+Sv=S$ if and only if for any corner $S$ of $R$, $aS+bS=S$ implies that there exists a right invertible matrix $\begin{pmatrix} a&b\\ *&* \end{pmatrix} \in M_2(S)$. The dual assertions are also proved.
LA - eng
KW - strong separativity; exchange ring; regular ring; strong separativity; exchange rings; regular rings
UR - http://eudml.org/doc/31218
ER -

References

top
  1. 10.1006/jabr.1997.7116, J.  Algebra 197 (1997), 409–423. (1997) Zbl0890.16003MR1483771DOI10.1006/jabr.1997.7116
  2. Diagonalization of matrices over regular rings, Linear Algebra Appl. 265 (1997), 147–163. (1997) MR1466896
  3. 10.1007/BF02780325, Isr. J.  Math. 105 (1998), 105–137. (1998) MR1639739DOI10.1007/BF02780325
  4. Cancellation of projective modules over regular rings with comparability, J. Pure Appl. Algebra 107 (1996), 19–38. (1996) MR1377653
  5. 10.1006/jabr.1997.7221, J.  Algebra 200 (1998), 207–224. (1998) Zbl0899.16002MR1603271DOI10.1006/jabr.1997.7221
  6. 10.1142/S0219498804000770, J.  Algebra Appl. 3 (2004), 207–217. (2004) Zbl1072.16004MR2069262DOI10.1142/S0219498804000770
  7. Von Neumann Regular Rings, Pitman, London-San Francisco-Melbourne, 1979; Krieger, Malabar (2nd edition), 1991. (1979; Krieger, Malabar (2nd edition), 1991) Zbl0411.16007MR0533669
  8. Von Neumann regular rings and direct sum decomposition problems, Abelian Groups and Modules, Kluwer, Dordrecht, 1995, pp. 249–255. (1995) Zbl0841.16008MR1378203
  9. 10.1016/0022-4049(82)90056-1, J.  Pure Appl. Algebra 24 (1982), 25–40. (1982) MR0647578DOI10.1016/0022-4049(82)90056-1
  10. 10.1080/00927879708825962, Commun. Algebra 25 (1997), 1917–1918. (1997) Zbl0883.16003MR1446139DOI10.1080/00927879708825962
  11. Separative cancellation and multiple isomorphism in torsion-free Abelian groups, J. Algebra 221 (1999), 536–550. (1999) MR1728395
  12. 10.1080/00927879608825721, Commun. Algebra 24 (1996), 2915–2929. (1996) Zbl0859.16001MR1396864DOI10.1080/00927879608825721
  13. Rings Close to Regular, Kluwer, Dordrecht, 2002. (2002) Zbl1120.16012MR1958361
  14. 10.1007/s00013-005-1363-5, Arch. Math. 85 (2005), 327–334. (2005) MR2174230DOI10.1007/s00013-005-1363-5

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.