3-Selmer groups for curves
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 2, page 429-445
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topBandini, Andrea. "3-Selmer groups for curves $y^2=x^3+a$." Czechoslovak Mathematical Journal 58.2 (2008): 429-445. <http://eudml.org/doc/31219>.
@article{Bandini2008,
abstract = {We explicitly perform some steps of a 3-descent algorithm for the curves $y^2=x^3+a$, $a$ a nonzero integer. In general this will enable us to bound the order of the 3-Selmer group of such curves.},
author = {Bandini, Andrea},
journal = {Czechoslovak Mathematical Journal},
keywords = {elliptic curves; Selmer groups; elliptic curves; Selmer groups},
language = {eng},
number = {2},
pages = {429-445},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {3-Selmer groups for curves $y^2=x^3+a$},
url = {http://eudml.org/doc/31219},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Bandini, Andrea
TI - 3-Selmer groups for curves $y^2=x^3+a$
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 429
EP - 445
AB - We explicitly perform some steps of a 3-descent algorithm for the curves $y^2=x^3+a$, $a$ a nonzero integer. In general this will enable us to bound the order of the 3-Selmer group of such curves.
LA - eng
KW - elliptic curves; Selmer groups; elliptic curves; Selmer groups
UR - http://eudml.org/doc/31219
ER -
References
top- 10.1216/rmjm/1181069889, Rocky Mt. J. Math. 34 (2004), 13–27. (2004) Zbl1083.11040MR2061115DOI10.1216/rmjm/1181069889
- Arithmetic on curves of genus 1. VIII: On conjectures of Birch and Swinnerton-Dyer, J. Reine Angew. Math. 217 (1965), 180–199. (1965) Zbl0241.14017MR0179169
- 10.1090/S0002-9947-00-02535-6, Trans. Am. Math. Soc. 352 (2000), 5583–5597. (2000) MR1694286DOI10.1090/S0002-9947-00-02535-6
- 10.1007/BF01388984, Invent. Math. 89 (1987), 527–560. (1987) Zbl0628.14018MR0903383DOI10.1007/BF01388984
- 10.1007/BF01239508, Invent. Math. 103 (1991), 25–68. (1991) Zbl0737.11030MR1079839DOI10.1007/BF01239508
- 10.1016/0022-314X(86)90075-2, J. Number Theory 23 (1986), 294–317. (1986) MR0846960DOI10.1016/0022-314X(86)90075-2
- 10.1090/S0002-9947-03-03366-X, Trans. Am. Math. Soc. 356 (2004), 1209–1231. (2004) MR2021618DOI10.1090/S0002-9947-03-03366-X
- 10.1006/jnth.1996.0006, J. Number Theory 56 (1996), 79–114. (1996) Zbl0859.11034MR1370197DOI10.1006/jnth.1996.0006
- The Arithmetic of Elliptic Curves, Graduate Texts in Mathematics, Vol. 106, Springer, New York, 1986. (1986) Zbl0585.14026MR0817210
- 10.1007/978-1-4612-0851-8, Graduate Texts in Mathematics, Vol. 151, Springer, New York, 1994. (1994) Zbl0911.14015MR1312368DOI10.1007/978-1-4612-0851-8
- 10.1515/crll.1998.076, J. Reine Angew. Math. 501 (1998), 171–189. (1998) MR1637841DOI10.1515/crll.1998.076
- 10.1006/jnth.2001.2727, J. Number Theory 93 (2002), 183–206. (2002) MR1899302DOI10.1006/jnth.2001.2727
- Descent by 3-isogeny and 3-rank of quadratic fields, In: Advances in Number Theory, F. Q. Gouvea, N. Yui (eds.), Clarendon Press, Oxford, 1993, pp. 303–317. (1993) Zbl0804.11040MR1368429
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.