On a sub-supersolution method for the prescribed mean curvature problem
Czechoslovak Mathematical Journal (2008)
- Volume: 58, Issue: 2, page 541-560
- ISSN: 0011-4642
Access Full Article
topAbstract
topHow to cite
topLe, Vy Khoi. "On a sub-supersolution method for the prescribed mean curvature problem." Czechoslovak Mathematical Journal 58.2 (2008): 541-560. <http://eudml.org/doc/31228>.
@article{Le2008,
abstract = {The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.},
author = {Le, Vy Khoi},
journal = {Czechoslovak Mathematical Journal},
keywords = {variational inequality; sub-supersolution; enclosure; extremal solution; prescribed mean curvature problem; variational inequality; sub-supersolution; enclosure; extremal solution; prescribed mean curvature problem},
language = {eng},
number = {2},
pages = {541-560},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a sub-supersolution method for the prescribed mean curvature problem},
url = {http://eudml.org/doc/31228},
volume = {58},
year = {2008},
}
TY - JOUR
AU - Le, Vy Khoi
TI - On a sub-supersolution method for the prescribed mean curvature problem
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 541
EP - 560
AB - The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
LA - eng
KW - variational inequality; sub-supersolution; enclosure; extremal solution; prescribed mean curvature problem; variational inequality; sub-supersolution; enclosure; extremal solution; prescribed mean curvature problem
UR - http://eudml.org/doc/31228
ER -
References
top- 10.1088/0266-5611/10/6/003, Inverse Problems 10 (1994), 1217–1229. (1994) MR1306801DOI10.1088/0266-5611/10/6/003
- Functionals with linear growth defined on vector valued BV functions, J. Math. Pures Appl. 70 (1991), 269–323. (1991) MR1113814
- functions and traces, Rend. Sem. Mat. Univ. Padova 60 (1978), 1–21. (1978) MR0555952
- Ground states for the prescribed mean curvature equation: the supercritical case, Nonlinear Diffusion Equations and Their Equilibrium States, Math. Sci. Res. Inst. Publ., vol. 12, 1988, pp. 51–74. MR0956058
- 10.1002/cpa.3160260306, Comm. Pure Appl. Math. 26 (1973), 381–394. (1973) MR0344977DOI10.1002/cpa.3160260306
- Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics, vol. 207, Longman Scientific & Technical, Harlow, 1989. (1989) Zbl0669.49005MR1020296
- 10.1016/j.jmaa.2004.01.005, J. Math. Anal. Appl. 293 (2004), 269–284. (2004) MR2052546DOI10.1016/j.jmaa.2004.01.005
- Existence and comparison results for quasilinear evolution hemivariational inequalities, Electron. J. Differential Equations 57 (2004), 1–17. (2004) MR2047413
- The sub-supersolution method and extremal solutions for quasilinear hemivariational inequalities, Differential Integral Equations 17 (2004), 165–178. (2004) MR2035501
- 10.1016/j.jmaa.2004.08.011, J. Math. Anal. Appl. 302 (2005), 65–83. (2005) MR2106547DOI10.1016/j.jmaa.2004.08.011
- 10.1007/BF01773922, Ann. Mat. Pura Appl. 149 (1987), 1–21. (1987) MR0932773DOI10.1007/BF01773922
- Relaxation of the nonparametric Plateau problem with an obstacle, J. Math. Pures Appl. 67 (1988), 359–396. (1988) MR0978576
- 10.1137/0522063, SIAM J. Math. Anal. 22 (1991), 982–990. (1991) MR1112060DOI10.1137/0522063
- Existence of ground states and free-boundary problems for the prescribed mean curvature equation, Adv. Differential Equations 7 (2002), 667–694. (2002) MR1894862
- An introduction to -convergence, Birkhäuser, 1993. (1993) Zbl0816.49001MR1201152
- Analyse convexe et problèmes variationnels, Dunod, 1974. (1974) MR0463993
- Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992. (1992) MR1158660
- Equilibrium capillary surfaces, Springer, New York, 1986. (1986) Zbl0583.35002MR0816345
- Some remarks on nonlinear noncoercive variational inequalities, Boll. Un. Math. Ital. 7 (1987), 143–165. (1987) MR0895456
- 10.1007/BF01418314, Math. Z. 139 (1974), 173–198. (1974) Zbl0316.49005MR0437925DOI10.1007/BF01418314
- 10.1007/BF01175590, Math. Z. 149 (1976), 281–286. (1976) Zbl0317.49052MR0417887DOI10.1007/BF01175590
- Boundary value problems for surfaces of prescribed mean curvature, J. Math. Pures Appl. 58 (1979), 75–109. (1979) Zbl0413.35024MR0533236
- Elliptic partial differential equations of second order, Springer, Berlin, 1983. (1983) MR0737190
- Minimal surfaces and functions of bounded variations, Birkhäuser, Basel, 1984. (1984) MR0775682
- 10.1215/S0012-7094-64-03115-1, Duke Math. J. 31 (1964), 159–178. (1964) MR0162902DOI10.1215/S0012-7094-64-03115-1
- 10.1515/ans-2004-0101, Adv. Nonlinear Studies 4 (2004), 1–13. (2004) MR2033556DOI10.1515/ans-2004-0101
- Nonlinear eigenvalue problem associated with the generalized capillarity equation, J. Fac. Sci. Univ. Tokyo 37 (1990), 457–466. (1990) Zbl0723.49033MR1071430
- 10.1023/A:1022409808258, Czech. Math. J. 50 (2000), 185–196. (2000) MR1745471DOI10.1023/A:1022409808258
- 10.1006/jmaa.2000.6907, J. Math. Anal. Appl. 252 (2000), 65–90. (2000) Zbl0980.49011MR1797845DOI10.1006/jmaa.2000.6907
- 10.1016/S0362-546X(99)00440-X, Nonlinear Analysis 45 (2001), 775–800. (2001) Zbl1040.49008MR1841208DOI10.1016/S0362-546X(99)00440-X
- Some existence results on nontrivial solutions of the prescribed mean curvature equation, Adv. Nonlinear Studies 5 (2005), 133–161. (2005) Zbl1158.53335MR2126734
- Sub-supersolution theorems for quasilinear elliptic problems: A variational approach, Electron. J. Differential Equations (2004), 1–7. (2004) MR2108889
- Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. (1969) Zbl0189.40603MR0259693
- 10.1006/jmaa.1995.1462, J. Math. Anal. Appl. 196 (1995), 1093–1104. (1995) Zbl0854.35042MR1365242DOI10.1006/jmaa.1995.1462
- Critical point theory and Hamiltonian systems, Springer Verlag, New York, 1989. (1989) MR0982267
- 10.1512/iumj.1975.24.24020, Indiana Univ. Math. J. 24 (1974), 227–241. (1974) MR0352682DOI10.1512/iumj.1975.24.24020
- Existence and non-existence theorems for quasilinear partial differential equations the anomalous case, Accad. Naz. Lincei, Atti dei Convegni 77 (1985), 231–257. (1985)
- Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Math. Palermo 2 (1985), 171–185. (1985) MR0881397
- 10.1016/0362-546X(93)90005-D, Nonlinear Anal. 21 (1993), 631–641. (1993) MR1245866DOI10.1016/0362-546X(93)90005-D
- 10.1090/S0002-9939-1987-0894440-8, Proc. Amer. Math. Soc. 100 (1987), 694–700. (1987) MR0894440DOI10.1090/S0002-9939-1987-0894440-8
- Weakly differentiable functions, Springer, New York, 1989. (1989) Zbl0692.46022MR1014685
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.