On a sub-supersolution method for the prescribed mean curvature problem

Vy Khoi Le

Czechoslovak Mathematical Journal (2008)

  • Volume: 58, Issue: 2, page 541-560
  • ISSN: 0011-4642

Abstract

top
The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.

How to cite

top

Le, Vy Khoi. "On a sub-supersolution method for the prescribed mean curvature problem." Czechoslovak Mathematical Journal 58.2 (2008): 541-560. <http://eudml.org/doc/31228>.

@article{Le2008,
abstract = {The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.},
author = {Le, Vy Khoi},
journal = {Czechoslovak Mathematical Journal},
keywords = {variational inequality; sub-supersolution; enclosure; extremal solution; prescribed mean curvature problem; variational inequality; sub-supersolution; enclosure; extremal solution; prescribed mean curvature problem},
language = {eng},
number = {2},
pages = {541-560},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {On a sub-supersolution method for the prescribed mean curvature problem},
url = {http://eudml.org/doc/31228},
volume = {58},
year = {2008},
}

TY - JOUR
AU - Le, Vy Khoi
TI - On a sub-supersolution method for the prescribed mean curvature problem
JO - Czechoslovak Mathematical Journal
PY - 2008
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 58
IS - 2
SP - 541
EP - 560
AB - The paper is about a sub-supersolution method for the prescribed mean curvature problem. We formulate the problem as a variational inequality and propose appropriate concepts of sub- and supersolutions for such inequality. Existence and enclosure results for solutions and extremal solutions between sub- and supersolutions are established.
LA - eng
KW - variational inequality; sub-supersolution; enclosure; extremal solution; prescribed mean curvature problem; variational inequality; sub-supersolution; enclosure; extremal solution; prescribed mean curvature problem
UR - http://eudml.org/doc/31228
ER -

References

top
  1. 10.1088/0266-5611/10/6/003, Inverse Problems 10 (1994), 1217–1229. (1994) MR1306801DOI10.1088/0266-5611/10/6/003
  2. Functionals with linear growth defined on vector valued BV functions, J. Math. Pures Appl. 70 (1991), 269–323. (1991) MR1113814
  3. B V functions and traces, Rend. Sem. Mat. Univ. Padova 60 (1978), 1–21. (1978) MR0555952
  4. Ground states for the prescribed mean curvature equation: the supercritical case, Nonlinear Diffusion Equations and Their Equilibrium States, Math. Sci. Res. Inst. Publ., vol. 12, 1988, pp. 51–74. MR0956058
  5. 10.1002/cpa.3160260306, Comm. Pure Appl. Math. 26 (1973), 381–394. (1973) MR0344977DOI10.1002/cpa.3160260306
  6. Semicontinuity, relaxation and integral representation in the calculus of variations, Pitman Research Notes in Mathematics, vol. 207, Longman Scientific & Technical, Harlow, 1989. (1989) Zbl0669.49005MR1020296
  7. 10.1016/j.jmaa.2004.01.005, J. Math. Anal. Appl. 293 (2004), 269–284. (2004) MR2052546DOI10.1016/j.jmaa.2004.01.005
  8. Existence and comparison results for quasilinear evolution hemivariational inequalities, Electron. J. Differential Equations 57 (2004), 1–17. (2004) MR2047413
  9. The sub-supersolution method and extremal solutions for quasilinear hemivariational inequalities, Differential Integral Equations 17 (2004), 165–178. (2004) MR2035501
  10. 10.1016/j.jmaa.2004.08.011, J. Math. Anal. Appl. 302 (2005), 65–83. (2005) MR2106547DOI10.1016/j.jmaa.2004.08.011
  11. 10.1007/BF01773922, Ann. Mat. Pura Appl. 149 (1987), 1–21. (1987) MR0932773DOI10.1007/BF01773922
  12. Relaxation of the nonparametric Plateau problem with an obstacle, J. Math. Pures Appl. 67 (1988), 359–396. (1988) MR0978576
  13. 10.1137/0522063, SIAM J. Math. Anal. 22 (1991), 982–990. (1991) MR1112060DOI10.1137/0522063
  14. Existence of ground states and free-boundary problems for the prescribed mean curvature equation, Adv. Differential Equations 7 (2002), 667–694. (2002) MR1894862
  15. An introduction to Γ -convergence, Birkhäuser, 1993. (1993) Zbl0816.49001MR1201152
  16. Analyse convexe et problèmes variationnels, Dunod, 1974. (1974) MR0463993
  17. Measure theory and fine properties of functions, CRC Press, Boca Raton, 1992. (1992) MR1158660
  18. Equilibrium capillary surfaces, Springer, New York, 1986. (1986) Zbl0583.35002MR0816345
  19. Some remarks on nonlinear noncoercive variational inequalities, Boll. Un. Math. Ital. 7 (1987), 143–165. (1987) MR0895456
  20. 10.1007/BF01418314, Math. Z. 139 (1974), 173–198. (1974) Zbl0316.49005MR0437925DOI10.1007/BF01418314
  21. 10.1007/BF01175590, Math. Z. 149 (1976), 281–286. (1976) Zbl0317.49052MR0417887DOI10.1007/BF01175590
  22. Boundary value problems for surfaces of prescribed mean curvature, J. Math. Pures Appl. 58 (1979), 75–109. (1979) Zbl0413.35024MR0533236
  23. Elliptic partial differential equations of second order, Springer, Berlin, 1983. (1983) MR0737190
  24. Minimal surfaces and functions of bounded variations, Birkhäuser, Basel, 1984. (1984) MR0775682
  25. 10.1215/S0012-7094-64-03115-1, Duke Math. J. 31 (1964), 159–178. (1964) MR0162902DOI10.1215/S0012-7094-64-03115-1
  26. 10.1515/ans-2004-0101, Adv. Nonlinear Studies 4 (2004), 1–13. (2004) MR2033556DOI10.1515/ans-2004-0101
  27. Nonlinear eigenvalue problem associated with the generalized capillarity equation, J. Fac. Sci. Univ. Tokyo 37 (1990), 457–466. (1990) Zbl0723.49033MR1071430
  28. 10.1023/A:1022409808258, Czech. Math. J. 50 (2000), 185–196. (2000) MR1745471DOI10.1023/A:1022409808258
  29. 10.1006/jmaa.2000.6907, J. Math. Anal. Appl. 252 (2000), 65–90. (2000) Zbl0980.49011MR1797845DOI10.1006/jmaa.2000.6907
  30. 10.1016/S0362-546X(99)00440-X, Nonlinear Analysis 45 (2001), 775–800. (2001) Zbl1040.49008MR1841208DOI10.1016/S0362-546X(99)00440-X
  31. Some existence results on nontrivial solutions of the prescribed mean curvature equation, Adv. Nonlinear Studies 5 (2005), 133–161. (2005) Zbl1158.53335MR2126734
  32. Sub-supersolution theorems for quasilinear elliptic problems: A variational approach, Electron. J. Differential Equations (2004), 1–7. (2004) MR2108889
  33. Quelques méthodes de résolution des problèmes aux limites non linéaires, Dunod, Paris, 1969. (1969) Zbl0189.40603MR0259693
  34. 10.1006/jmaa.1995.1462, J. Math. Anal. Appl. 196 (1995), 1093–1104. (1995) Zbl0854.35042MR1365242DOI10.1006/jmaa.1995.1462
  35. Critical point theory and Hamiltonian systems, Springer Verlag, New York, 1989. (1989) MR0982267
  36. 10.1512/iumj.1975.24.24020, Indiana Univ. Math. J. 24 (1974), 227–241. (1974) MR0352682DOI10.1512/iumj.1975.24.24020
  37. Existence and non-existence theorems for quasilinear partial differential equations the anomalous case, Accad. Naz. Lincei, Atti dei Convegni 77 (1985), 231–257. (1985) 
  38. Non-existence theorems for quasilinear partial differential equations, Rend. Circ. Math. Palermo 2 (1985), 171–185. (1985) MR0881397
  39. 10.1016/0362-546X(93)90005-D, Nonlinear Anal. 21 (1993), 631–641. (1993) MR1245866DOI10.1016/0362-546X(93)90005-D
  40. 10.1090/S0002-9939-1987-0894440-8, Proc. Amer. Math. Soc. 100 (1987), 694–700. (1987) MR0894440DOI10.1090/S0002-9939-1987-0894440-8
  41. Weakly differentiable functions, Springer, New York, 1989. (1989) Zbl0692.46022MR1014685

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.