Strict completions of 0 * -groups

Roman Frič; Fabio Zanolin

Czechoslovak Mathematical Journal (1992)

  • Volume: 42, Issue: 4, page 589-598
  • ISSN: 0011-4642

How to cite

top

Frič, Roman, and Zanolin, Fabio. "Strict completions of $\mathcal {L}_0^*$-groups." Czechoslovak Mathematical Journal 42.4 (1992): 589-598. <http://eudml.org/doc/31320>.

@article{Frič1992,
author = {Frič, Roman, Zanolin, Fabio},
journal = {Czechoslovak Mathematical Journal},
keywords = {sequential convergence space; strict -group completion; Novak completion},
language = {eng},
number = {4},
pages = {589-598},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Strict completions of $\mathcal \{L\}_0^*$-groups},
url = {http://eudml.org/doc/31320},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Frič, Roman
AU - Zanolin, Fabio
TI - Strict completions of $\mathcal {L}_0^*$-groups
JO - Czechoslovak Mathematical Journal
PY - 1992
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 42
IS - 4
SP - 589
EP - 598
LA - eng
KW - sequential convergence space; strict -group completion; Novak completion
UR - http://eudml.org/doc/31320
ER -

References

top
  1. Rationals with exotic convergences II, Math. Slovaca 40 (1990), 389–400. (1990) MR1120969
  2. Completions of convergence groups, in: General Topology and its Relations to Modern Analysis and Algebra VI (Proc. Sixth Prague Topological Sympos., 1986), Helderman Verlag, Berlin, 1988, pp. 187–201. (1988) MR0952605
  3. Completions for subcategories of convergence rings, in: Categorical Topology and its Relations to Ananlysis, Algebra and Combinatorics (Praha 1988), World Scientific Publishing Co., Singapore, 1989, pp. 195–207. (1989) MR1047901
  4. A convergence group having no completion, in: Convergence Structures and Appications II, Abh. Adak, Wiss. DDR, Abt. Math.-Naturwiss.-Technik, 1984, Nr. 2N, Akademie-Verlag, Berlin, 1984, pp. 47–48. (1984) MR0790151
  5. Sequential convergence in free groups, Rend. Ist. Matem. Univ. Trieste 18 (1986), 200–218. (1986) MR0928331
  6. Relatively coarse convergence groups, (to appear). (to appear) MR0835476
  7. 10.2140/pjm.1974.51.483, Pacific J. Math. 51 (1974), 483–490. (1974) MR0390989DOI10.2140/pjm.1974.51.483
  8. 10.4064/sm-77-5-455-464, Studia Math. 77 (1984), 455–464. (1984) MR0751766DOI10.4064/sm-77-5-455-464
  9. On completion of abelian L 0 * -groups, in: Generalized Functions and Convergence (Katowice 1988), World Scientific Publishing Co., Singapore, 1990, pp. 335–341. (1990) MR1085521
  10. Completion of a class of convergence rings, (to appear). (to appear) 
  11. On convergence groups, Czechoslovak Math. J. 20 (1970), 357–384. (1970) MR0263973
  12. On completions of convergence commutative groups, in: General Topology and its Relations to Modern Analysis and Algebra III (Proc. Third Prague Topological Sympos., 1971), Academia, Praha, 1972, pp. 335–340. (1972) MR0365451
  13. Convergences L S H on the group of real numbers, (Seminar notes). 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.