Asymptotic intertwining and spectral inclusions on Banach spaces

Kjeld Bagger Laursen; Michael M. Neumann

Czechoslovak Mathematical Journal (1993)

  • Volume: 43, Issue: 3, page 483-497
  • ISSN: 0011-4642

How to cite

top

Laursen, Kjeld Bagger, and Neumann, Michael M.. "Asymptotic intertwining and spectral inclusions on Banach spaces." Czechoslovak Mathematical Journal 43.3 (1993): 483-497. <http://eudml.org/doc/31360>.

@article{Laursen1993,
author = {Laursen, Kjeld Bagger, Neumann, Michael M.},
journal = {Czechoslovak Mathematical Journal},
keywords = {asymptotic intertwining; spectral inclusions; dense range; property (C); weak 2-spectral decomposition property; property ; surjectivity spectrum; approximate point spectrum},
language = {eng},
number = {3},
pages = {483-497},
publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},
title = {Asymptotic intertwining and spectral inclusions on Banach spaces},
url = {http://eudml.org/doc/31360},
volume = {43},
year = {1993},
}

TY - JOUR
AU - Laursen, Kjeld Bagger
AU - Neumann, Michael M.
TI - Asymptotic intertwining and spectral inclusions on Banach spaces
JO - Czechoslovak Mathematical Journal
PY - 1993
PB - Institute of Mathematics, Academy of Sciences of the Czech Republic
VL - 43
IS - 3
SP - 483
EP - 497
LA - eng
KW - asymptotic intertwining; spectral inclusions; dense range; property (C); weak 2-spectral decomposition property; property ; surjectivity spectrum; approximate point spectrum
UR - http://eudml.org/doc/31360
ER -

References

top
  1. An example of a weakly decomposable operator, which is not decomposable, Rev. Roumaine Math. Pures Appl., 20 (1975), 855–861. (1975) MR0377582
  2. 10.1007/BF01729357, Integral Equations and Operator Theory 2 (1979), 1–10. (1979) Zbl0421.47014MR0532735DOI10.1007/BF01729357
  3. Analytic functional models and local spectral theory, Preprint University of Saarbrücken and University of Münster, 1991. (1991) MR1455859
  4. Some topics in the theory of decomposable operators, in: Advances in invariant subspaces and other results of operator theory, Operator Theory: Advances and Applications, vol. 17, Birkhäuser Verlag, Basel, 1986, pp. 15–34. (1986) MR0901056
  5. Lectures in functional analysis and operator theory, Springer-Verlag, New York, 1974. (1974) Zbl0296.46002MR0417727
  6. 10.2140/pjm.1959.9.379, Pacific J. Math. 9 (1959), 379–397. (1959) Zbl0086.31702MR0117562DOI10.2140/pjm.1959.9.379
  7. 10.1090/S0002-9939-1975-0390824-7, Proc. Amer. Math. Soc. 53 (1975), 88–90. (1975) MR0390824DOI10.1090/S0002-9939-1975-0390824-7
  8. Theory of generalized spectral operators, Gordon and Breach, New York, 1968. (1968) MR0394282
  9. 10.4153/CJM-1974-132-6, Can. J. Math. 26 (1974), 1384–1389. (1974) MR0355649DOI10.4153/CJM-1974-132-6
  10. Operator decomposability and weakly continuous representations of locally compact abelian groups, J. Operator Theory 7 (1982), 201–208. (1982) Zbl0489.47019MR0658608
  11. Analytische Dualität und Tensorprodukte in der mehrdimensionalen Spektraltheorie, Habilitationsschrift, Schriftenreihe des Mathematischen Instituts der Universität Münster, 2. Serie, Heft 42, Münster, 1987. (1987) MR0876484
  12. 10.1016/0022-1236(90)90034-I, J. Functional Analysis 94 (1990), 196–222. (1990) MR1077551DOI10.1016/0022-1236(90)90034-I
  13. A note on quasisimilarity of operators, Acta Sci. Math. (Szeged) 39 (1977), 67–85. (1977) Zbl0364.47020MR0445319
  14. A Hilbert space problem book, Van NostrandNew York, 1967. (1967) Zbl0144.38704MR0208368
  15. Quasisimilarity of operators, Illinois J. Math. 16 (1972), 678–686. (1972) MR0312304
  16. 10.2140/pjm.1992.152.323, Pacific J . Math. 152 (1992), 323–336. (1992) Zbl0783.47028MR1141799DOI10.2140/pjm.1992.152.323
  17. Decomposable multipliers and applications to harmonic analysis, Studia Math. 101 (1992), 193–214. (1992) MR1149572
  18. 10.1007/BF01189927, Arch. Math. 58 (1992), 368–375. (1992) MR1152625DOI10.1007/BF01189927
  19. Some remarks on the surjectivity spectrum of linear operators, Czech. Math. J. 39 (114) (1989), 730–739. (1989) MR1018009
  20. Hyponormal operators are subscalar, J. Operator Theory 12 (1984), 385–395. (1984) Zbl0573.47016MR0757441
  21. 10.1215/S0012-7094-56-02324-9, Duke Math. J. 23 (1956), 263–269. (1956) Zbl0073.33003MR0079235DOI10.1215/S0012-7094-56-02324-9
  22. Fourier analysis on groups, Interscience Publishers, New York, 1962. (1962) Zbl0107.09603MR0152834
  23. Quasi-similarity of operators, Proc. Royal Irish Acad. Sect. A 81 (1981), 109–119. (1981) MR0635584
  24. Analytic functional calculus and spect ral decompositions, Editura Academiei and D. Reidel Publishing Company, Bucureşti and Dordrecht, 1982. (1982) 
  25. On local spectral properties of operators in Banach spaces, Czech. Math. J. 23 (98) (1973), 483–492. (1973) MR0322536
  26. 10.2140/pjm.1973.47.609, Pacific J. Math. 47 (1973), 609–626. (1973) Zbl0242.43006MR0326309DOI10.2140/pjm.1973.47.609

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.