# Oscillatory properties of a differential inclusion of order $n>1$ and the asymptotic equivalence

Czechoslovak Mathematical Journal (1994)

- Volume: 44, Issue: 3, page 561-569
- ISSN: 0011-4642

## Access Full Article

top## How to cite

topŠvec, Marko. "Oscillatory properties of a differential inclusion of order $n>1$ and the asymptotic equivalence." Czechoslovak Mathematical Journal 44.3 (1994): 561-569. <http://eudml.org/doc/31426>.

@article{Švec1994,

author = {Švec, Marko},

journal = {Czechoslovak Mathematical Journal},

keywords = {solutions; asymptotic equivalent higher-order differential inclusions},

language = {eng},

number = {3},

pages = {561-569},

publisher = {Institute of Mathematics, Academy of Sciences of the Czech Republic},

title = {Oscillatory properties of a differential inclusion of order $n>1$ and the asymptotic equivalence},

url = {http://eudml.org/doc/31426},

volume = {44},

year = {1994},

}

TY - JOUR

AU - Švec, Marko

TI - Oscillatory properties of a differential inclusion of order $n>1$ and the asymptotic equivalence

JO - Czechoslovak Mathematical Journal

PY - 1994

PB - Institute of Mathematics, Academy of Sciences of the Czech Republic

VL - 44

IS - 3

SP - 561

EP - 569

LA - eng

KW - solutions; asymptotic equivalent higher-order differential inclusions

UR - http://eudml.org/doc/31426

ER -

## References

top- 10.32917/hmj/1206454449, Hiroshima Math. J. 20 (1990), 185–195. (1990) MR1050435DOI10.32917/hmj/1206454449
- Linear operators, General theory, Interscience Publishers, New York, London, 1958. (1958) MR0117523
- Le caractère oscillatoire des solutions de l’équation ${y}^{\left(n\right)}+f\left(t\right){y}^{\alpha}=0$, $n>1$, Czech. Math. J. 13 (88), 481–491. (88)
- Asymptotic equivalence and oscillatory properties of ordinary differential equations, Equadiff 78 (1978), 213–222. (1978)

## Citations in EuDML Documents

top## NotesEmbed ?

topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.