Chromatic numbers of the strong product of odd cycles

Janez Žerovnik

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 4, page 379-385
  • ISSN: 0139-9918

How to cite

top

Žerovnik, Janez. "Chromatic numbers of the strong product of odd cycles." Mathematica Slovaca 56.4 (2006): 379-385. <http://eudml.org/doc/31512>.

@article{Žerovnik2006,
author = {Žerovnik, Janez},
journal = {Mathematica Slovaca},
keywords = {strong product of graphs; chromatic number; cycle},
language = {eng},
number = {4},
pages = {379-385},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Chromatic numbers of the strong product of odd cycles},
url = {http://eudml.org/doc/31512},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Žerovnik, Janez
TI - Chromatic numbers of the strong product of odd cycles
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 4
SP - 379
EP - 385
LA - eng
KW - strong product of graphs; chromatic number; cycle
UR - http://eudml.org/doc/31512
ER -

References

top
  1. FEIGENBAUM J.-SCHÄFFER A., Finding the prime factors of strong direct product graphs in polynomial time, Discrete Math. 109 (1992), 77-102. (1992) Zbl0786.68076MR1192372
  2. HELL P.-ROBERTS F., Analogues of the Shannon capacity of graph, Ann. Discrete Math. 12 (1982), 155-168. (1982) MR0806979
  3. HELL P.-NEŠETŘIL J., On the complexity of H-coloring, J. Combin. Theory Ser. B 48 (1990), 92-110. (1990) Zbl0639.05023MR1047555
  4. IMRICH W.-KLAVŽAR S., Product Graphs: Structure and Recognition, John Wiley k. Sons, New York, 2000. Zbl0963.05002MR1788124
  5. JHA P. K., Smallest independent dominating sets in Kronecker products of cycles, Discrete Appl. Math. (To appear). Zbl0991.05083MR1857787
  6. KLAVŽAR S., Strong products of χ -critical graphs, Aequationes Math. 45 (1993), 153-162. (1993) Zbl0787.05039MR1212381
  7. KLAVŽAR S., Coloring graph products. A survey, Discrete Math. 155 (1996), 135-145. (1996) Zbl0857.05035MR1401366
  8. LOVÁSZ L., On the Shannon capacity of a graph, IEEE Trans. Inform. Theory 25 (1979), 1-7. (1979) Zbl0395.94021MR0514926
  9. PETFORD A.-WELSH D., A randomised 3-colouring algorithm, Discrete Math. 74 (1989), 253-261. (1989) Zbl0667.05025MR0989138
  10. SABIDUSSI G., Graph multiplication, Math. Z. 72 (1960), 446-457. (1960) Zbl0093.37603MR0209177
  11. SHANNON C. E., The zero-error capacity of a noisy channel, IRE Trans. Inform. Theory 2 (1956), 8-19. (1956) MR0089131
  12. VESEL A., The independence number of the strong product of cycles, Comput. Math. Appl. 36 (1998), 9-21. (1998) Zbl0941.05046MR1647692
  13. VESZTERGOMBI F., Some remarks on the chromatic number of the strong product of graphs, Acta Cybernet. 4 (1978/79), 207-212. (1978) MR0525046
  14. ŽEROVNIK J., A randomized algorithm for k-color ability, Discrete Math. 131 (1994), 379-393. (1994) MR1287751
  15. ŽEROVNIK J., Pomen temperature pri nekaterih hevristikah kombinatorične optimizacije, In: Proceedings DSI, Portorož, april 2000, Slovensko Društvo Informatika Ljubljana 2000, pp. 604-609. (Slovene) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.