Minimum maximal graphs with forbidden subgraphs

Frank Harary; Michael Plantholt

Mathematica Slovaca (1985)

  • Volume: 35, Issue: 1, page 83-89
  • ISSN: 0139-9918

How to cite

top

Harary, Frank, and Plantholt, Michael. "Minimum maximal graphs with forbidden subgraphs." Mathematica Slovaca 35.1 (1985): 83-89. <http://eudml.org/doc/31580>.

@article{Harary1985,
author = {Harary, Frank, Plantholt, Michael},
journal = {Mathematica Slovaca},
keywords = {maximal graphs; forbidden subgraphs},
language = {eng},
number = {1},
pages = {83-89},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Minimum maximal graphs with forbidden subgraphs},
url = {http://eudml.org/doc/31580},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Harary, Frank
AU - Plantholt, Michael
TI - Minimum maximal graphs with forbidden subgraphs
JO - Mathematica Slovaca
PY - 1985
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 35
IS - 1
SP - 83
EP - 89
LA - eng
KW - maximal graphs; forbidden subgraphs
UR - http://eudml.org/doc/31580
ER -

References

top
  1. BOLLOBÁS B., Extremal graph theory, Academic Press, London 1978. (1978) MR0506522
  2. ERDÖS P., Über ein Extremalproblem in der Graphentheorie, Archiv Math. 13, 1962, 222-227. (1962) Zbl0105.17504MR0139542
  3. ERDÖS P., HAJNAL A., MOON J. W., A problem in graph theory, Amer. Math. Monthly 71, 1964, 1107-1110. (1964) Zbl0126.39401MR0170339
  4. HARARY F., Graph theory, Addison-Wesley, Reading 1969. (1969) Zbl0196.27202MR0256911
  5. HARARY F., Maximum versus minimum invariants for graphs, J. Graph Theory 7, 1983, 275-284. (1983) Zbl0515.05053MR0710904
  6. HARARY F., READ R. C., Is the null graph a pointless concept?, Springer Lecture Notes Math. 406, 1974, 37-44. (1974) Zbl0293.05101MR0360369
  7. MADER W., 1-Faktoren von Graphen, Math. Ann. 201, 1973, 269-282. (1973) Zbl0234.05115MR0360357
  8. MOON J. W., An extremal problem in graph theory, Intern. Congress of Math., Moscow 1966, Abstracts, Section 13, 10. (1966) 
  9. OLLMAN L. T., K2.2-saturated graphs with a minimal number of edges, Proc. 3rd SE Conf. Combinatorics, Graph Theory and Computing, Florida Atlantic Univ., Boca Raton 1972, 367-392. (1972) MR0349477
  10. SIMONOVITS M., A method for solving extremal problems in graph theory, stability problems, Theory of Graphs (ed. P. Erdos and G. Katona), Academic Press, New York 1968, 279-319. (1968) Zbl0164.24604MR0233735
  11. TURÁN P., Eine Extremalaufgabe aus der Graphentheorie, Mat. Fiz. Lapok 48, 1941, 436-452 (in Hungarian). (1941) Zbl0026.26903MR0018405

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.