Integral with respect to a pre-measure
Mathematica Slovaca (1979)
- Volume: 29, Issue: 2, page 141-155
- ISSN: 0139-9918
Access Full Article
topHow to cite
topŠipoš, Ján. "Integral with respect to a pre-measure." Mathematica Slovaca 29.2 (1979): 141-155. <http://eudml.org/doc/31588>.
@article{Šipoš1979,
author = {Šipoš, Ján},
journal = {Mathematica Slovaca},
keywords = {pre-measure; pre-measurable space; continuous pre-measure; Lebesgue theorems; Fatou's lemma; Beppo-Levi theorem},
language = {eng},
number = {2},
pages = {141-155},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Integral with respect to a pre-measure},
url = {http://eudml.org/doc/31588},
volume = {29},
year = {1979},
}
TY - JOUR
AU - Šipoš, Ján
TI - Integral with respect to a pre-measure
JO - Mathematica Slovaca
PY - 1979
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 29
IS - 2
SP - 141
EP - 155
LA - eng
KW - pre-measure; pre-measurable space; continuous pre-measure; Lebesgue theorems; Fatou's lemma; Beppo-Levi theorem
UR - http://eudml.org/doc/31588
ER -
References
top- ALEXIUK V. N., Two theorems on the existence of the quasibase for the set of quasimeasures (Russian), Izv. VUZ, 6 (73), 1968, 11-18. (1968) MR0227345
- ALEXIUK V. N., BEZNOSIKOV F. D., Exstension of continuous outeг measure on a Boolean algebгa, (Russian). Izv. VUZ, 4 (119), 1972, 3-9. (1972)
- DOBRAKOV, L, On submeasures I, Disseгtationes Mathematicae CXII, (1974) 1-35. (1974) Zbl0292.28001MR0367140
- DREWNOWSKI L., Topological rings of sets, continuous set functions, integration. I, II, Bull. Acad. Pol. Sci., 20, 1972, 269-286. (1972) MR0306432
- HALMOS P. R., Measuгe Theory, New York 1950. (1950)
- MEYER P. A., Pгobability and Potentials, 1966.
- RIEČAN B., On extension of the Daniell integration scheme, Mat. Čas. 25, 1975, 211-219. (1975) MR0396889
Citations in EuDML Documents
top- Antonio Boccuto, Beloslav Riečan, The symmetric Choquet integral with respect to Riesz-space-valued capacities
- Anna Kolesárová, Note on the integral with respect to the pre-measure
- Ján Šipoš, Nonlinear integrals
- Pedro Miranda, Michel Grabisch, -symmetric bi-capacities
- Mirko Navara, Pavel Pták, Two-valued measures on -classes
- Ján Šipoš, Integral representations of non-linear functionals
- Ivica Marinová, Integration with respect to a -measure
- Blahoslav Harman, Subadditive maximal ergodic theorem
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.