On one-point -compactification and local - compactness

David A. Rose; T. R. Hamlett

Mathematica Slovaca (1992)

  • Volume: 42, Issue: 3, page 359-369
  • ISSN: 0232-0525

How to cite

top

Rose, David A., and Hamlett, T. R.. "On one-point $\mathcal {I}$-compactification and local $\mathcal {I}$- compactness." Mathematica Slovaca 42.3 (1992): 359-369. <http://eudml.org/doc/31603>.

@article{Rose1992,
author = {Rose, David A., Hamlett, T. R.},
journal = {Mathematica Slovaca},
keywords = {local -compactness; locally -closed space; codense ideal; local ideal; ideal expansion; ideal; one-point Hausdorff - compactification},
language = {eng},
number = {3},
pages = {359-369},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On one-point $\mathcal \{I\}$-compactification and local $\mathcal \{I\}$- compactness},
url = {http://eudml.org/doc/31603},
volume = {42},
year = {1992},
}

TY - JOUR
AU - Rose, David A.
AU - Hamlett, T. R.
TI - On one-point $\mathcal {I}$-compactification and local $\mathcal {I}$- compactness
JO - Mathematica Slovaca
PY - 1992
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 42
IS - 3
SP - 359
EP - 369
LA - eng
KW - local -compactness; locally -closed space; codense ideal; local ideal; ideal expansion; ideal; one-point Hausdorff - compactification
UR - http://eudml.org/doc/31603
ER -

References

top
  1. RANČIN D. V., Compactness modulo an ideal, Soviet Math. Dokl. 13(1) (1972), 193-197. (1972) Zbl0254.54023MR0296899
  2. NEWCOMB R. L., Topologies Which are Compact Modulo an Ideal, Ph.D. dissertation, Univ. of Cal. at Santa Barbara, 1967. (1967) MR2939797
  3. HAMLETT T. R, JANKOVIČ D., Compactness with respect to an ideal, Boll. Un. Mat. Ital. B (7) 4 (1990), 849-861. (1990) Zbl0741.54001MR1086708
  4. HAMLETT T. R., ROSE D., Local compactness with respect to an ideal, Kyung Pook Math. J. 32 (1992), 31-43. (1992) Zbl0767.54019MR1170488
  5. PORTER J., On locally H-closed spaces, Proc. London Math. Soc. (3) 20 (1970), 193-204. (1970) Zbl0189.53404MR0256354
  6. VAIDYANATHASWAMY R., Set Topology, Chelsea Publishing Company, New York, 1960. (1960) MR0115151
  7. NJÅSTAD O., Classes of topologies defined by ideals, Matematisk Institutt, Universitetet I Trondheim, (Preprint). 
  8. NJÅSTAD O., Remarks on topologies defined by local properties, Det Norske Videnskabs-Akademi, Avh. I Mat. Naturv, Klasse, Ny Serie No. 8 (1966), 1-16. (1966) Zbl0148.16504MR0215278
  9. JANKOVIČ D., HAMLETT T. R., New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 255-310. (1990) Zbl0723.54005MR1048441
  10. JANKOVIČ D., HAMLETT T. R., Compatible extensions of ideals, Boll. Un. Mat. Ital. B (7), (To appear). Zbl0818.54002MR1191948
  11. VAIDYANATHASWAMY R., The localization theory in set-topology, Proc. Indian Acad. Sci. Math. Sci. 20 (1945), 51-61. (1945) MR0010961
  12. SEMADENI Z., Functions with sets of points of discontinuity belonging to a fixed ideal, Fund. Math. LII (1963), 25-39. (1963) Zbl0146.12302MR0149259
  13. OXTOBY J. C., Measure and Category, Springer-Verlag, New York, 1980. (1980) Zbl0435.28011MR0584443
  14. SAMUELS P., A topology formed from a given topology and ideal, J. London Math. Soc. (2) 10 (1975), 409-416. (1975) Zbl0303.54001MR0375200
  15. BANKSTON P., The total negation of a topological property, Illinois J. Math. 23 (1979), 241-252. (1979) Zbl0405.54003MR0528560
  16. KELLEY J. T., General Topology, D. Van Nostrand Company, Inc., Princeton, 1955. (1955) Zbl0066.16604MR0070144

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.