On one-point -compactification and local - compactness
Mathematica Slovaca (1992)
- Volume: 42, Issue: 3, page 359-369
- ISSN: 0232-0525
Access Full Article
topHow to cite
topRose, David A., and Hamlett, T. R.. "On one-point $\mathcal {I}$-compactification and local $\mathcal {I}$- compactness." Mathematica Slovaca 42.3 (1992): 359-369. <http://eudml.org/doc/31603>.
@article{Rose1992,
author = {Rose, David A., Hamlett, T. R.},
journal = {Mathematica Slovaca},
keywords = {local -compactness; locally -closed space; codense ideal; local ideal; ideal expansion; ideal; one-point Hausdorff - compactification},
language = {eng},
number = {3},
pages = {359-369},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On one-point $\mathcal \{I\}$-compactification and local $\mathcal \{I\}$- compactness},
url = {http://eudml.org/doc/31603},
volume = {42},
year = {1992},
}
TY - JOUR
AU - Rose, David A.
AU - Hamlett, T. R.
TI - On one-point $\mathcal {I}$-compactification and local $\mathcal {I}$- compactness
JO - Mathematica Slovaca
PY - 1992
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 42
IS - 3
SP - 359
EP - 369
LA - eng
KW - local -compactness; locally -closed space; codense ideal; local ideal; ideal expansion; ideal; one-point Hausdorff - compactification
UR - http://eudml.org/doc/31603
ER -
References
top- RANČIN D. V., Compactness modulo an ideal, Soviet Math. Dokl. 13(1) (1972), 193-197. (1972) Zbl0254.54023MR0296899
- NEWCOMB R. L., Topologies Which are Compact Modulo an Ideal, Ph.D. dissertation, Univ. of Cal. at Santa Barbara, 1967. (1967) MR2939797
- HAMLETT T. R, JANKOVIČ D., Compactness with respect to an ideal, Boll. Un. Mat. Ital. B (7) 4 (1990), 849-861. (1990) Zbl0741.54001MR1086708
- HAMLETT T. R., ROSE D., Local compactness with respect to an ideal, Kyung Pook Math. J. 32 (1992), 31-43. (1992) Zbl0767.54019MR1170488
- PORTER J., On locally H-closed spaces, Proc. London Math. Soc. (3) 20 (1970), 193-204. (1970) Zbl0189.53404MR0256354
- VAIDYANATHASWAMY R., Set Topology, Chelsea Publishing Company, New York, 1960. (1960) MR0115151
- NJÅSTAD O., Classes of topologies defined by ideals, Matematisk Institutt, Universitetet I Trondheim, (Preprint).
- NJÅSTAD O., Remarks on topologies defined by local properties, Det Norske Videnskabs-Akademi, Avh. I Mat. Naturv, Klasse, Ny Serie No. 8 (1966), 1-16. (1966) Zbl0148.16504MR0215278
- JANKOVIČ D., HAMLETT T. R., New topologies from old via ideals, Amer. Math. Monthly 97 (1990), 255-310. (1990) Zbl0723.54005MR1048441
- JANKOVIČ D., HAMLETT T. R., Compatible extensions of ideals, Boll. Un. Mat. Ital. B (7), (To appear). Zbl0818.54002MR1191948
- VAIDYANATHASWAMY R., The localization theory in set-topology, Proc. Indian Acad. Sci. Math. Sci. 20 (1945), 51-61. (1945) MR0010961
- SEMADENI Z., Functions with sets of points of discontinuity belonging to a fixed ideal, Fund. Math. LII (1963), 25-39. (1963) Zbl0146.12302MR0149259
- OXTOBY J. C., Measure and Category, Springer-Verlag, New York, 1980. (1980) Zbl0435.28011MR0584443
- SAMUELS P., A topology formed from a given topology and ideal, J. London Math. Soc. (2) 10 (1975), 409-416. (1975) Zbl0303.54001MR0375200
- BANKSTON P., The total negation of a topological property, Illinois J. Math. 23 (1979), 241-252. (1979) Zbl0405.54003MR0528560
- KELLEY J. T., General Topology, D. Van Nostrand Company, Inc., Princeton, 1955. (1955) Zbl0066.16604MR0070144
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.