Congruence of Ankeny-Artin-Chowla type for cyclic fields

Stanislav Jakubec

Mathematica Slovaca (1998)

  • Volume: 48, Issue: 3, page 323-326
  • ISSN: 0232-0525

How to cite

top

Jakubec, Stanislav. "Congruence of Ankeny-Artin-Chowla type for cyclic fields." Mathematica Slovaca 48.3 (1998): 323-326. <http://eudml.org/doc/31620>.

@article{Jakubec1998,
author = {Jakubec, Stanislav},
journal = {Mathematica Slovaca},
keywords = {congruence of Ankeny-Artin-Chowla type; cyclic fields},
language = {eng},
number = {3},
pages = {323-326},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Congruence of Ankeny-Artin-Chowla type for cyclic fields},
url = {http://eudml.org/doc/31620},
volume = {48},
year = {1998},
}

TY - JOUR
AU - Jakubec, Stanislav
TI - Congruence of Ankeny-Artin-Chowla type for cyclic fields
JO - Mathematica Slovaca
PY - 1998
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 48
IS - 3
SP - 323
EP - 326
LA - eng
KW - congruence of Ankeny-Artin-Chowla type; cyclic fields
UR - http://eudml.org/doc/31620
ER -

References

top
  1. FENG, KE QIN., The Ankeny-Artin-Chowla formula for cubic cyclic number fields, J. China Univ. Sci. Тech. 12 (1982), 20-27. (1982) MR0705871
  2. IТO H., Congruence relations of Ankeny-Artin-Chowla type for pure cubic field, Nagoya Math. J. 96 (1984), 95-112. (1984) MR0771071
  3. JAKUBEC S., The congruence for Gauss's period, J. Number Тheory 48 (1994), 36-45. (1994) MR1284872
  4. JAKUBEC S., Congruence of Ankeny-Artin-Chowla type for cyclic fields of prime degree l, Math. Proc. Cambridge Philos. Soc. 119 (1996), 17-22. (1996) Zbl0853.11085MR1356153
  5. KAMEI M., Congruences of Ankeny-Artin-Chowla type for pure quartic and sectic fields, Nagoya Math. J. 108 (1987), 131-144. (1987) Zbl0634.12009MR0920331
  6. MARKO F., On the existence of p-units and Minkowski units in totally real cyclic fields, Abh. Math. Sem. Univ. Hamburg (To appeaг). Zbl0869.11087MR1418221
  7. SCHERTZ R., Über die analitische Klassenzahlformel für realle abelsche Zahlkorper, J. Reine Angew. Math. 307-308 (1979), 424-430. (1979) MR0534237
  8. ZHANG, XIAN KE., Ten formulae of type Ankeny-Artin-Chowla for class number of general cyclic quartic fields, Sci. China Ser. A 32 (1989), 417-428. (1989) MR1050029

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.