On the permanence properties of interval homogeneous orthomodular lattices

Anna De Simone; Mirko Navara

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 1, page 13-21
  • ISSN: 0139-9918

How to cite

top

De Simone, Anna, and Navara, Mirko. "On the permanence properties of interval homogeneous orthomodular lattices." Mathematica Slovaca 54.1 (2004): 13-21. <http://eudml.org/doc/31672>.

@article{DeSimone2004,
author = {De Simone, Anna, Navara, Mirko},
journal = {Mathematica Slovaca},
keywords = {orthomodular lattice; -completeness; interval homogeneity; Cantor-Bernstein theorem},
language = {eng},
number = {1},
pages = {13-21},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On the permanence properties of interval homogeneous orthomodular lattices},
url = {http://eudml.org/doc/31672},
volume = {54},
year = {2004},
}

TY - JOUR
AU - De Simone, Anna
AU - Navara, Mirko
TI - On the permanence properties of interval homogeneous orthomodular lattices
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 1
SP - 13
EP - 21
LA - eng
KW - orthomodular lattice; -completeness; interval homogeneity; Cantor-Bernstein theorem
UR - http://eudml.org/doc/31672
ER -

References

top
  1. BERAN L., Orthomodular Lattices, Algebraic Approach, Academia/D. Reidel, Praha/Dordrecht, 1984. (1984) MR0785005
  2. DE SIMONE A.-MUNDICI D.-NAVARA M.: A, Cantor-Bernstein theorem for a-complete MV-algebras, Czechoslovak Math. J. 53 (128) (2003), 437-447. MR1983464
  3. DE SIMONE A.-NAVARA M.-PTÁK P., On interval homogeneous orthomodular lattices, Comment. Math. Univ. Carolin. 42 (2001), 23-30. Zbl1052.06007MR1825370
  4. FREYTES H., An algebraic version of the Cantor-Bernstein-Schroder Theorem, Czechoslovak Math. J. (To appear). MR2086720
  5. JAKUBÍK J., A theorem of Cant or-Bernstein type for orthogonally a-complete pseudo MV-algebras, Tatra Mt. Math. Publ. 22 (2002), 91-103. MR1889037
  6. JENČA G., A Cant or-Bernstein type theorem for effect algebras, Algebra Universalis 48 (2002), 399-411. MR1967089
  7. KALMBACH G., Orthomodular Lattices, Academic Press, London, 1983. (1983) Zbl0528.06012MR0716496
  8. KALLUS M.-TRNKOVÁ V., Symmetries and retracts of quantum logics, Internat. J. Theor. Phys. 26 (1987), 1-9. (1987) Zbl0626.06013MR0890206
  9. Handbook of Boolean Algebras I, (J. D. Monk, R. Bonnet, eds.), North Holland Elsevier Science Publisher B.V., Amsterdam, 1989. (1989) 
  10. PTÁK P.-PULMANNOVÁ S., Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht-Boston-London, 1991. (1991) Zbl0743.03039MR1176314
  11. TRNKOVÁ V., Automorphisms and symmetries of quantum logics, Internat. J. Theor. Physics 28 (1989), 1195-1214. (1989) Zbl0697.03034MR1031603

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.