On the permanence properties of interval homogeneous orthomodular lattices
Mathematica Slovaca (2004)
- Volume: 54, Issue: 1, page 13-21
- ISSN: 0232-0525
Access Full Article
topHow to cite
topDe Simone, Anna, and Navara, Mirko. "On the permanence properties of interval homogeneous orthomodular lattices." Mathematica Slovaca 54.1 (2004): 13-21. <http://eudml.org/doc/31672>.
@article{DeSimone2004,
author = {De Simone, Anna, Navara, Mirko},
journal = {Mathematica Slovaca},
keywords = {orthomodular lattice; -completeness; interval homogeneity; Cantor-Bernstein theorem},
language = {eng},
number = {1},
pages = {13-21},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On the permanence properties of interval homogeneous orthomodular lattices},
url = {http://eudml.org/doc/31672},
volume = {54},
year = {2004},
}
TY - JOUR
AU - De Simone, Anna
AU - Navara, Mirko
TI - On the permanence properties of interval homogeneous orthomodular lattices
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 1
SP - 13
EP - 21
LA - eng
KW - orthomodular lattice; -completeness; interval homogeneity; Cantor-Bernstein theorem
UR - http://eudml.org/doc/31672
ER -
References
top- BERAN L., Orthomodular Lattices, Algebraic Approach, Academia/D. Reidel, Praha/Dordrecht, 1984. (1984) MR0785005
- DE SIMONE A.-MUNDICI D.-NAVARA M.: A, Cantor-Bernstein theorem for a-complete MV-algebras, Czechoslovak Math. J. 53 (128) (2003), 437-447. MR1983464
- DE SIMONE A.-NAVARA M.-PTÁK P., On interval homogeneous orthomodular lattices, Comment. Math. Univ. Carolin. 42 (2001), 23-30. Zbl1052.06007MR1825370
- FREYTES H., An algebraic version of the Cantor-Bernstein-Schroder Theorem, Czechoslovak Math. J. (To appear). MR2086720
- JAKUBÍK J., A theorem of Cant or-Bernstein type for orthogonally a-complete pseudo MV-algebras, Tatra Mt. Math. Publ. 22 (2002), 91-103. MR1889037
- JENČA G., A Cant or-Bernstein type theorem for effect algebras, Algebra Universalis 48 (2002), 399-411. MR1967089
- KALMBACH G., Orthomodular Lattices, Academic Press, London, 1983. (1983) Zbl0528.06012MR0716496
- KALLUS M.-TRNKOVÁ V., Symmetries and retracts of quantum logics, Internat. J. Theor. Phys. 26 (1987), 1-9. (1987) Zbl0626.06013MR0890206
- Handbook of Boolean Algebras I, (J. D. Monk, R. Bonnet, eds.), North Holland Elsevier Science Publisher B.V., Amsterdam, 1989. (1989)
- PTÁK P.-PULMANNOVÁ S., Orthomodular Structures as Quantum Logics, Kluwer, Dordrecht-Boston-London, 1991. (1991) Zbl0743.03039MR1176314
- TRNKOVÁ V., Automorphisms and symmetries of quantum logics, Internat. J. Theor. Physics 28 (1989), 1195-1214. (1989) Zbl0697.03034MR1031603
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.