On the order and the number of cliques in a random graph

Daniel Olejár; Eduard Toman

Mathematica Slovaca (1997)

  • Volume: 47, Issue: 5, page 499-510
  • ISSN: 0232-0525

How to cite

top

Olejár, Daniel, and Toman, Eduard. "On the order and the number of cliques in a random graph." Mathematica Slovaca 47.5 (1997): 499-510. <http://eudml.org/doc/31676>.

@article{Olejár1997,
author = {Olejár, Daniel, Toman, Eduard},
journal = {Mathematica Slovaca},
keywords = {random graph; order of cliques; number of cliques},
language = {eng},
number = {5},
pages = {499-510},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On the order and the number of cliques in a random graph},
url = {http://eudml.org/doc/31676},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Olejár, Daniel
AU - Toman, Eduard
TI - On the order and the number of cliques in a random graph
JO - Mathematica Slovaca
PY - 1997
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 47
IS - 5
SP - 499
EP - 510
LA - eng
KW - random graph; order of cliques; number of cliques
UR - http://eudml.org/doc/31676
ER -

References

top
  1. BOLLOBÁS B., Random Graphs, Academic Press, New York, 1985. (1985) Zbl0592.05052MR0809996
  2. BOLLOBÁS B.-ERDŐS P., Cliques in random graphs, Math. Proc. Cambridge Philos. Soc. 80 (1976), 419-427. (1976) Zbl0344.05155MR0498256
  3. FARBER M.-HUJTER M., TUZA, ZS., An upper bound on the number of cliques in a graph, Networks 23 (1993), 207-210. (1993) Zbl0777.05070MR1215390
  4. FÜREDI Z., The number of maximal independent sets in connected graphs, J. Graph Theory 11 (1987), 463-470. (1987) Zbl0647.05032MR0917193
  5. HEDMAN B., The maximum number of cliques in dense graphs, Discrete Math. 54 (1985), 161-166. (1985) Zbl0569.05029MR0791657
  6. KALBFLEISCH J. G., Complete subgraphs of random hypergraphs and bipartite graphs, In: Proc. of 3rd Southeastern Conference on Combinatorics, Graph Theory and Computing, Florida Atlantic University, 1972, pp. 297-304. (1972) Zbl0272.05126MR0354447
  7. KORSHUNOV A. D., The basic properties of random graphs with large numbers of vertices and edges, Uspekhi Mat. Nauk 40 (1985), 107-173. (Russian) (1985) MR0783606
  8. MATULA D. W., On the complete subgraphs of a random graph, In: Proc. 2nd Chapel Hill Conf. Combinatorial Math, and its Applications (R. C. Bose et al., eds.), Univ. North Carolina, Chapel Hill, 1970, pp. 356-369. (1970) Zbl0209.28101MR0266796
  9. MATULA D. W., The employee party problem, Notices Amer. Math. Soc. 19 (1972), A-382. (1972) 
  10. MATULA D. W., The largest clique size in a random graph, Technical report CS 7608, Dept. of Computer Science, Southern Methodist University, Dallas, 1976. (1976) 
  11. MOON J. W.-MOSER L., On cliques in graphs, Israel J. Math. 3 (1965), 22-28. (1965) Zbl0144.23205MR0182577
  12. PALMER E. M., Graphical Evolution: An Introduction to the Theory of Random Graphs, John Wiley, New York, 1985. (1985) Zbl0566.05002MR0795795

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.