On the order and the number of cliques in a random graph
Mathematica Slovaca (1997)
- Volume: 47, Issue: 5, page 499-510
- ISSN: 0139-9918
Access Full Article
topHow to cite
topReferences
top- BOLLOBÁS B., Random Graphs, Academic Press, New York, 1985. (1985) Zbl0592.05052MR0809996
- BOLLOBÁS B.-ERDŐS P., Cliques in random graphs, Math. Proc. Cambridge Philos. Soc. 80 (1976), 419-427. (1976) Zbl0344.05155MR0498256
- FARBER M.-HUJTER M., TUZA, ZS., An upper bound on the number of cliques in a graph, Networks 23 (1993), 207-210. (1993) Zbl0777.05070MR1215390
- FÜREDI Z., The number of maximal independent sets in connected graphs, J. Graph Theory 11 (1987), 463-470. (1987) Zbl0647.05032MR0917193
- HEDMAN B., The maximum number of cliques in dense graphs, Discrete Math. 54 (1985), 161-166. (1985) Zbl0569.05029MR0791657
- KALBFLEISCH J. G., Complete subgraphs of random hypergraphs and bipartite graphs, In: Proc. of 3rd Southeastern Conference on Combinatorics, Graph Theory and Computing, Florida Atlantic University, 1972, pp. 297-304. (1972) Zbl0272.05126MR0354447
- KORSHUNOV A. D., The basic properties of random graphs with large numbers of vertices and edges, Uspekhi Mat. Nauk 40 (1985), 107-173. (Russian) (1985) MR0783606
- MATULA D. W., On the complete subgraphs of a random graph, In: Proc. 2nd Chapel Hill Conf. Combinatorial Math, and its Applications (R. C. Bose et al., eds.), Univ. North Carolina, Chapel Hill, 1970, pp. 356-369. (1970) Zbl0209.28101MR0266796
- MATULA D. W., The employee party problem, Notices Amer. Math. Soc. 19 (1972), A-382. (1972)
- MATULA D. W., The largest clique size in a random graph, Technical report CS 7608, Dept. of Computer Science, Southern Methodist University, Dallas, 1976. (1976)
- MOON J. W.-MOSER L., On cliques in graphs, Israel J. Math. 3 (1965), 22-28. (1965) Zbl0144.23205MR0182577
- PALMER E. M., Graphical Evolution: An Introduction to the Theory of Random Graphs, John Wiley, New York, 1985. (1985) Zbl0566.05002MR0795795