Metric distribution results for sequences ( { q n α } )

Hansjörg Albrecher

Mathematica Slovaca (2002)

  • Volume: 52, Issue: 2, page 195-206
  • ISSN: 0139-9918

How to cite

top

Albrecher, Hansjörg. "Metric distribution results for sequences $(\lbrace q_n\vec{\alpha }\rbrace )$." Mathematica Slovaca 52.2 (2002): 195-206. <http://eudml.org/doc/31684>.

@article{Albrecher2002,
author = {Albrecher, Hansjörg},
journal = {Mathematica Slovaca},
keywords = {sequence; distribution; discrepancy; well-distribution},
language = {eng},
number = {2},
pages = {195-206},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Metric distribution results for sequences $(\lbrace q_n\vec\{\alpha \}\rbrace )$},
url = {http://eudml.org/doc/31684},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Albrecher, Hansjörg
TI - Metric distribution results for sequences $(\lbrace q_n\vec{\alpha }\rbrace )$
JO - Mathematica Slovaca
PY - 2002
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 52
IS - 2
SP - 195
EP - 206
LA - eng
KW - sequence; distribution; discrepancy; well-distribution
UR - http://eudml.org/doc/31684
ER -

References

top
  1. DRMOTA M., TICHY R., Sequences, Discrepancies and Applications, Lecture Notes in Math. 1651, Springer, New York-Berlin-Heidelberg-Tokyo, 1997. (1997) Zbl0877.11043MR1470456
  2. DYER T., HARMAN G., Sums involving common divisors, J. London Math. Soc. (2) 34 (1986), 1-11. (1986) Zbl0602.10041MR0859143
  3. GÁL I., A theorem concerning diophantine approximation, Nieuw Arch. Wisk. 23 (1949), 12-38. (1949) MR0027788
  4. KOKSMA J., On a certain integral in the theory of uniform distribution, Indag. Math. 13 (1951), 285 287. (1951) Zbl0043.27701MR0045165
  5. KUIPERS L., NIEDERREITER H., Uniform Distribution of Sequences, Pure Apr 1. Math., Wiley-Intersci. Publ., John Wiley & Sons, New York, 1974. (1974) Zbl0281.10001MR0419394
  6. MAUDUIT C., SÁRKÖZY A., On finite pseudorandom binary sequences VI (On ( n i n ) sequences), Monatsh. Math. 130 (2000), 261-280. Zbl1011.11054MR1785423
  7. MÓRICZ F., SERFLING R., STOUT W., Moment and probability bounds with quasisuperadditive structure for the maximum partial sum, Ann. Probab. 10 (1982), 1032-1040. (1982) MR0672303
  8. PHILIPP W., TICHY R., Metric theorems for distribution measures of pseudorandom sequences, Monatsh. Math. (2001) (To appear). Zbl1033.11039MR1914808
  9. SCHOISSENGEIER J., The integral mean of the discrepancy of the sequence (nα), Monatsh. Math. 131 (2000), 227-234. Zbl0972.11067MR1801750
  10. STRAUCH O., An improvement of an inequality of Koksma, Indag. Math. (N.S.) 3 (1992), 113-118. (1992) Zbl0755.11023MR1157523
  11. STRAUCH O., L 2 discrepancy, Math. Slovaca 44 (1994), 601-632. (1994) MR1338433
  12. ZINTERHOF P., Über einige Abschatzungen bei der Approximation von Funktionen mit Gleichverteilungsmethoden, Sitzungsber. Österreich. Akad. Wiss. Math.-Natur. Kl. II 185 (1976), 121-132. (1976) MR0501760

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.