B-groups of order a product of two distinct primes

Primož Potočnik

Mathematica Slovaca (2001)

  • Volume: 51, Issue: 1, page 63-67
  • ISSN: 0139-9918

How to cite

top

Potočnik, Primož. "B-groups of order a product of two distinct primes." Mathematica Slovaca 51.1 (2001): 63-67. <http://eudml.org/doc/31696>.

@article{Potočnik2001,
author = {Potočnik, Primož},
journal = {Mathematica Slovaca},
keywords = {primitive permutation groups; 2-transitive groups; B-groups},
language = {eng},
number = {1},
pages = {63-67},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {B-groups of order a product of two distinct primes},
url = {http://eudml.org/doc/31696},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Potočnik, Primož
TI - B-groups of order a product of two distinct primes
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 1
SP - 63
EP - 67
LA - eng
KW - primitive permutation groups; 2-transitive groups; B-groups
UR - http://eudml.org/doc/31696
ER -

References

top
  1. BERCOV R. D., The double transitivity of a class of permutation groups, Canad. J. Math. 17 (1965), 480-493. (1965) Zbl0132.27101MR0174624
  2. BURNSIDE W., Theory of Groups of Finite Order, (2nd ed.), Cambridge University Press. London. 1911. (1911) MR1575665
  3. HUPPERT B., Endlische Gruppen I, Springer-Verlag, Berlin, 1967. (1967) MR0224703
  4. MARUŠIČ D.-SCAPELLATO R., Characterizing vertex-transitive pq-graphs with an imprimitive automorphism subgroup, J. Graph Theory 16 (1992), 375-387. (1992) Zbl0764.05035MR1174460
  5. MARUŠIČ D.-SCAPELLATO. R., Imprimitive representations of SL(2,2k), J. Combin. Theory Ser. B 58 (1993), 46-57. (1993) MR1214891
  6. MARUŠIČ D.-SCAPELLATO R., Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica 14 (1994), 187-201. (1994) Zbl0799.05027MR1289072
  7. NAGAI O., On transitive groups that contain non-Abelian regular subgroups, Osaka Math. J. 13 (1961), 199-207. (1961) Zbl0103.01403MR0130303
  8. NAGAO H., On transitive groups of order 3p, J. Math. Osaka City Univ. 14 (1963), 23-33. (1963) MR0158003
  9. PRAEGER C.-XU M. Y., Vertex primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993), 245-266. (1993) Zbl0793.05072MR1244933
  10. PRAEGER C.-WANG R. J., Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993), 299-318. (1993) Zbl0793.05071MR1223702
  11. SCHUR I., Zur Theorie der Einfach Transitiven Permutations gruppen, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. (1933), 598-623. (1933) 
  12. SCOTT W. R., Solvable factorizable groups, Ilinois J. Math 1 (1957), 389-394. (1957) Zbl0077.24902MR0094400
  13. SOOMRO K. D., Nonabelian Burnside groups of certain order, Riazi J. Karachi Math. Assoc. 7 (1985), 1-5. (1985) MR0890069
  14. WANG R. J.-XU M. Y., A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B 58 (1993), 197-216. (1993) Zbl0793.05074MR1223693
  15. WIELANDT H., Zur Theorie der Einfach Transitiven Permutationsgruppen, Math. Z. 40 (1935), 582-587. (1935) Zbl0012.34303MR1545582
  16. WIELANDT H., Zur Theorie der Einfach Transitiven Permutationsgruppen II, Math. Z. 52 (1947), 384-393. (1947) MR0033817
  17. WIELANDT H., Finite Permutation Groups, Academic Press, New York, 1964. (1964) Zbl0138.02501MR0183775

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.