B-groups of order a product of two distinct primes
Mathematica Slovaca (2001)
- Volume: 51, Issue: 1, page 63-67
- ISSN: 0232-0525
Access Full Article
topHow to cite
topPotočnik, Primož. "B-groups of order a product of two distinct primes." Mathematica Slovaca 51.1 (2001): 63-67. <http://eudml.org/doc/31696>.
@article{Potočnik2001,
author = {Potočnik, Primož},
journal = {Mathematica Slovaca},
keywords = {primitive permutation groups; 2-transitive groups; B-groups},
language = {eng},
number = {1},
pages = {63-67},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {B-groups of order a product of two distinct primes},
url = {http://eudml.org/doc/31696},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Potočnik, Primož
TI - B-groups of order a product of two distinct primes
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 1
SP - 63
EP - 67
LA - eng
KW - primitive permutation groups; 2-transitive groups; B-groups
UR - http://eudml.org/doc/31696
ER -
References
top- BERCOV R. D., The double transitivity of a class of permutation groups, Canad. J. Math. 17 (1965), 480-493. (1965) Zbl0132.27101MR0174624
- BURNSIDE W., Theory of Groups of Finite Order, (2nd ed.), Cambridge University Press. London. 1911. (1911) MR1575665
- HUPPERT B., Endlische Gruppen I, Springer-Verlag, Berlin, 1967. (1967) MR0224703
- MARUŠIČ D.-SCAPELLATO R., Characterizing vertex-transitive pq-graphs with an imprimitive automorphism subgroup, J. Graph Theory 16 (1992), 375-387. (1992) Zbl0764.05035MR1174460
- MARUŠIČ D.-SCAPELLATO. R., Imprimitive representations of SL(2,2k), J. Combin. Theory Ser. B 58 (1993), 46-57. (1993) MR1214891
- MARUŠIČ D.-SCAPELLATO R., Classifying vertex-transitive graphs whose order is a product of two primes, Combinatorica 14 (1994), 187-201. (1994) Zbl0799.05027MR1289072
- NAGAI O., On transitive groups that contain non-Abelian regular subgroups, Osaka Math. J. 13 (1961), 199-207. (1961) Zbl0103.01403MR0130303
- NAGAO H., On transitive groups of order 3p, J. Math. Osaka City Univ. 14 (1963), 23-33. (1963) MR0158003
- PRAEGER C.-XU M. Y., Vertex primitive graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 59 (1993), 245-266. (1993) Zbl0793.05072MR1244933
- PRAEGER C.-WANG R. J., Symmetric graphs of order a product of two distinct primes, J. Combin. Theory Ser. B 58 (1993), 299-318. (1993) Zbl0793.05071MR1223702
- SCHUR I., Zur Theorie der Einfach Transitiven Permutations gruppen, Sitzungsber. Preuss. Akad. Wiss., Phys.-Math. Kl. (1933), 598-623. (1933)
- SCOTT W. R., Solvable factorizable groups, Ilinois J. Math 1 (1957), 389-394. (1957) Zbl0077.24902MR0094400
- SOOMRO K. D., Nonabelian Burnside groups of certain order, Riazi J. Karachi Math. Assoc. 7 (1985), 1-5. (1985) MR0890069
- WANG R. J.-XU M. Y., A classification of symmetric graphs of order 3p, J. Combin. Theory Ser. B 58 (1993), 197-216. (1993) Zbl0793.05074MR1223693
- WIELANDT H., Zur Theorie der Einfach Transitiven Permutationsgruppen, Math. Z. 40 (1935), 582-587. (1935) Zbl0012.34303MR1545582
- WIELANDT H., Zur Theorie der Einfach Transitiven Permutationsgruppen II, Math. Z. 52 (1947), 384-393. (1947) MR0033817
- WIELANDT H., Finite Permutation Groups, Academic Press, New York, 1964. (1964) Zbl0138.02501MR0183775
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.