Random walk probabilities in terms of Legendre polynomials

Mohamed A. El-Shehawey

Mathematica Slovaca (2002)

  • Volume: 52, Issue: 4, page 443-451
  • ISSN: 0232-0525

How to cite

top

El-Shehawey, Mohamed A.. "Random walk probabilities in terms of Legendre polynomials." Mathematica Slovaca 52.4 (2002): 443-451. <http://eudml.org/doc/31725>.

@article{El2002,
author = {El-Shehawey, Mohamed A.},
journal = {Mathematica Slovaca},
keywords = {asymmetric random walk; generating function; Legendre polynomial; transition probability},
language = {eng},
number = {4},
pages = {443-451},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Random walk probabilities in terms of Legendre polynomials},
url = {http://eudml.org/doc/31725},
volume = {52},
year = {2002},
}

TY - JOUR
AU - El-Shehawey, Mohamed A.
TI - Random walk probabilities in terms of Legendre polynomials
JO - Mathematica Slovaca
PY - 2002
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 52
IS - 4
SP - 443
EP - 451
LA - eng
KW - asymmetric random walk; generating function; Legendre polynomial; transition probability
UR - http://eudml.org/doc/31725
ER -

References

top
  1. COX D. R.-MILLER H. D., The Theory of Stochastic Processes, Methuen, London, 1965. (1965) Zbl0149.12902MR0192521
  2. EL-SHEHAWEY M. A., On the frequency count for a random walk with absorbing boundaries: a carcinogenesis example I, J. Phys. A, Math. Gen. 27 (1994), 7035-7046. (1994) Zbl0843.60086MR1309785
  3. EL-SHEHAWEY M. A.-MATRAFI B. N., On a gambler's ruin problem, Math. Slovaca 47 (1997), 483-488. (1997) Zbl0965.60043MR1796961
  4. EL-SHEHAWEY M. A., Absorption probabilities for a random walk between two partially absorbing boudaries I, J. Phys. A, Math. Gen. 33 (2000), 9005-9013. MR1811225
  5. FELLER W., An Introduction to Probability Theory and its Applications, Vol. 1 (Зrd ed.), Wiley, New York, 1968. (1968) Zbl0155.23101MR0228020
  6. NEUTS M. F., General transition probabilities for finite Markov chains, Math. Proc. Cambridge Philos. Soc. 60 (1964), 83-91. (1964) Zbl0124.34101MR0158436
  7. RAYKIN M., First passage probability of a random walk on a disordered one-dimensional lattice, J. Phys. A, Math. Gen. 26 (1993), 449-466. (1993) Zbl0768.60061MR1210918
  8. SRINIVASAN S. K.-MEHATA K. M., Stochastic Processes, Mc Graw Hill, New Delhi, 1976. (1976) 
  9. WEISS G. H.-HAVLIN S., Trapping of random walks on the line, 3. Statist. Phys. 37 (1984), 17-25. (1984) Zbl0586.60066MR0774882
  10. WHITTAKER E. T.-WATSON G. N., A Course of Modern Analysis (4th ed.), University press, Cambridge, 1963. (1963) MR1424469

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.