Every l -variety satisfying the amalgamation property is representable

Sergei A. Gurchenkov

Mathematica Slovaca (1997)

  • Volume: 47, Issue: 3, page 221-229
  • ISSN: 0139-9918

How to cite

top

Gurchenkov, Sergei A.. "Every $l$-variety satisfying the amalgamation property is representable." Mathematica Slovaca 47.3 (1997): 221-229. <http://eudml.org/doc/31814>.

@article{Gurchenkov1997,
author = {Gurchenkov, Sergei A.},
journal = {Mathematica Slovaca},
keywords = {-variety; amalgamation},
language = {eng},
number = {3},
pages = {221-229},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Every $l$-variety satisfying the amalgamation property is representable},
url = {http://eudml.org/doc/31814},
volume = {47},
year = {1997},
}

TY - JOUR
AU - Gurchenkov, Sergei A.
TI - Every $l$-variety satisfying the amalgamation property is representable
JO - Mathematica Slovaca
PY - 1997
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 47
IS - 3
SP - 221
EP - 229
LA - eng
KW - -variety; amalgamation
UR - http://eudml.org/doc/31814
ER -

References

top
  1. GLASS A. M. W.-SARACINO P.-WOOD C., Non-amalgamation of ordered groups, Math. Proc. Cambridge Philos. Soc. 95 (1984), 191-195. (1984) Zbl0553.06017MR0735363
  2. GURCHENKOV S. A., Varieties of nilpotent lattice ordered groups, Algebra and Logic 21 (1982), 499-510. (Russian) (1982) Zbl0517.06015MR0721044
  3. GURCHENKOV S. A., Varieties of l-groups with the identity [xp,yp] = e have finite basis, Algebra and Logic 23 (1984), 27-47. (Russian) (1984) MR0781403
  4. GURCHENKOV S. A-KOPYTOV V. M., On covers of variety of abelian lattice ordered groups, Siberian Math. J. 28 (1987), 66-69. (Russian) (1987) MR0904635
  5. HOLLAND W. CH.-GLASS A. M. W.-McCLEARY S., The structure of l-group varieties, Algebra Universalis 10 (1980), 1-20. (1980) MR0552151
  6. PIERCE K. R., Amalgamating abelian ordered groups, Pacifìc. J. Math. 43 (1972), 711-723. (1972) Zbl0259.06018MR0319848
  7. PIERCE K. R., Amalgamations of lattice ordered groups, Trans. Amer. Math. Soc. 172 (1972), 249-260. (1972) MR0325488
  8. POWELL W. B.-TSINAKIS C., Amalgamations of lattice ordered groups, In: Ordered Algebraic Structures. (W. B. Powell, C. Tsinakis, eds.) Lecture Notes in Pure and Appl. Math. 99, Marcel Dekker, New York, 1985, pp. 171-178. (1985) Zbl0572.06011MR0823771
  9. POWELL W. P.-TSINAKIS C., Amalgamations of l-groups, In: Lattice ordered groups. (A. M. W. Glass, W. Ch. Holland, eds.) Advances and Techniques, D. Reidel, Dordrecht, 1989, pp. 308-327. (1989) MR1036082
  10. POWELL W. B.-TSINAKIS C., The failure of the amalgamation property for varieties of representable l-groups, Math. Proc. Cambridge Philos. Soc. 106 (1989), 439-443. (1989) MR1010368
  11. Problem lists, Ordered Algebraic Structures, Notices Amer. Math, Soc 29 (1982), 327. (1982) 

NotesEmbed ?

top

You must be logged in to post comments.