Uniform modular integrability and convergence properties for a class of Urysohn integral operators in function spaces

Carlo Bardaro; Ilaria Mantellini

Mathematica Slovaca (2006)

  • Volume: 56, Issue: 4, page 465-482
  • ISSN: 0232-0525

How to cite

top

Bardaro, Carlo, and Mantellini, Ilaria. "Uniform modular integrability and convergence properties for a class of Urysohn integral operators in function spaces." Mathematica Slovaca 56.4 (2006): 465-482. <http://eudml.org/doc/31825>.

@article{Bardaro2006,
author = {Bardaro, Carlo, Mantellini, Ilaria},
journal = {Mathematica Slovaca},
keywords = {uniform modular integrability; modular space; nonlinear operator; singularity},
language = {eng},
number = {4},
pages = {465-482},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Uniform modular integrability and convergence properties for a class of Urysohn integral operators in function spaces},
url = {http://eudml.org/doc/31825},
volume = {56},
year = {2006},
}

TY - JOUR
AU - Bardaro, Carlo
AU - Mantellini, Ilaria
TI - Uniform modular integrability and convergence properties for a class of Urysohn integral operators in function spaces
JO - Mathematica Slovaca
PY - 2006
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 56
IS - 4
SP - 465
EP - 482
LA - eng
KW - uniform modular integrability; modular space; nonlinear operator; singularity
UR - http://eudml.org/doc/31825
ER -

References

top
  1. BARDARO C.-MANTELLINI I., A modular convergence theorem for nonlinear integral operators, Comment. Math. Prace Mat. 36 (1996), 27-37. (1996) MR1427818
  2. BARDARO C.-MANTELLINI I., On a singularity concept for kernels of nonlinear integral operators, Int. Math. J. 1 (2002), 239-254. Zbl0982.47033MR1840601
  3. BARDARO C.-MANTELLINI I., On approximation properties of Urysohn integral operators, Int. J. Pure Appl. Math. 3 (2002), 129-148. Zbl1012.41017MR1937645
  4. BARDARO C.-MANTELLINI I., Approximation properties in abstract modular spaces for a class of general sampling type operators, Appl. Anal. 85 (2006), 383-413. Zbl1089.41012MR2196677
  5. BARDARO C.-MUSIELAK J.-VINTI G., On absolute continuity of a modular connected with strong summability, Comment. Math. Prace Mat. 34 (1994), 21-33. (1994) Zbl0832.46020MR1325071
  6. BARDARO C.-MUSIELAK J.-VINTI G., Nonlinear Integral Operators and Applications, de Gruyter Ser. Nonlinear Anal. Appl. 9, de Gruyter, Berlin, 2003. Zbl1030.47003MR1994699
  7. BUTZER P. L.-NESSEL R. J., Fourier Analysis and Approximation I, Academic Press, New York-London, 1971. (1971) MR0510857
  8. KOZLOWSKI W. M., Modular Function Spaces, Pure and Applied Math. 122, Marcel Dekker, New York-Basel, 1988. (1988) Zbl0747.46022MR1474499
  9. MANTELLINI I., Generalized sampling operators in modular spaces, Comment. Math. Prace Mat. 38 (1998), 77-92. (1998) Zbl0984.47025MR1672252
  10. MANTELLINI I.-VINTI G., Approximation results for nonlinear integral operators in modular spaces and applications, Ann. Polon. Math. 46 (2003), 55-71. Zbl1019.41013MR1977761
  11. MUSIELAK J., Orlicz Spaces and Modular Spaces, Lecture Notes in Math. 1034. Springer-Verlag, New York, 1983. (1983) Zbl0557.46020MR0724434
  12. MUSIELAK J., Nonlinear approximation in some modular function spaces I, Math. Japon. 38 (1993), 83-90. (1993) Zbl0779.46017MR1204187
  13. WILLARD S., General Topology Addison-Wesley Series in Math., Addison Wesley Publ. Comp., Reading, MA, 1970. (1970) MR0264581

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.