Triple positive solutions for conjugate boundary value problems
John M. Davis; Johnny Henderson
Mathematica Slovaca (2001)
- Volume: 51, Issue: 3, page 313-320
- ISSN: 0232-0525
Access Full Article
topHow to cite
topDavis, John M., and Henderson, Johnny. "Triple positive solutions for $(k,n-k)$ conjugate boundary value problems." Mathematica Slovaca 51.3 (2001): 313-320. <http://eudml.org/doc/31955>.
@article{Davis2001,
author = {Davis, John M., Henderson, Johnny},
journal = {Mathematica Slovaca},
keywords = {ordinary differential equation; boundary value problem; Green function; multiple solution; fixed-point},
language = {eng},
number = {3},
pages = {313-320},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Triple positive solutions for $(k,n-k)$ conjugate boundary value problems},
url = {http://eudml.org/doc/31955},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Davis, John M.
AU - Henderson, Johnny
TI - Triple positive solutions for $(k,n-k)$ conjugate boundary value problems
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 3
SP - 313
EP - 320
LA - eng
KW - ordinary differential equation; boundary value problem; Green function; multiple solution; fixed-point
UR - http://eudml.org/doc/31955
ER -
References
top- ANDERSON D., Multiple positive solutions for a three-point boundary value problem, Math. Comput. Modelling 27 (1998), 49-57. (1998) Zbl0906.34014MR1620897
- AVERY R. I., Existence of multiple positive solutions to a conjugate boundary value problem, Math. Sci. Res. Hot-Line 2 (1998), 1-6. (1998) Zbl0960.34503MR1604142
- AVERY R.-PETERSON A., Multiple positive solutions of a discrete second order conjugate problem, Panamer. Math. J. 8 (1998), 1-12. (1998) Zbl0959.39006MR1642636
- CHYAN C. J.-DAVIS J. M., Existence of triple positive solutions for and boundary value problems, Commun. Aррl. Anal. (To appear). Zbl1085.34512
- CHYAN C. J.-DAVIS J. M.-YIN W. K. C, Existence of triple positive solutions for right focal boundary value problems, Nonlinear Stud. 8 (2001), 33-52. Zbl0999.34019MR1856215
- ELOE P. W.-HENDERSON J., Inequalities based on a generalization of concavity, Proc. Amer. Math. Soc. 125 (1997), 2103-2108. (1997) Zbl0868.34008MR1376760
- GUO D.-LAKSHMIKANTHAM V., Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. (1988) Zbl0661.47045MR0959889
- HENDERSON J., Multiple symmetric positive solutions for discrete Lidstone boundary value problems, Dynam. Contin. Discrete Impuls. Systems 7 (2000), 577-585. Zbl0969.39003MR1795819
- HENDERSON J.-THOMPSON H. B., Multiple symmetric solutions for a second order boundary value problem, Proc. Amer. Math. Soc. 128 (2000), 2373-2379. MR1709753
- LEGGETT R.-WILLIAMS L., Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673-688. (1979) Zbl0421.47033MR0542951
- WONG P. J. Y.-AGARWAL R. P., Results and estimates on multiple solutions of Lidstone boundary value problems, Acta Math. Hungar. 86 (2000), 137-168. Zbl0966.34017MR1728595
- WONG P. J. Y.-AGARWAL R. P., Multiple solutions of difference and partial difference equations with Lidstone conditions, Math. Comput. Modelling 32 (2000), 699-725. Zbl0973.39001MR1791177
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.