Triple positive solutions for ( k , n - k ) conjugate boundary value problems

John M. Davis; Johnny Henderson

Mathematica Slovaca (2001)

  • Volume: 51, Issue: 3, page 313-320
  • ISSN: 0232-0525

How to cite

top

Davis, John M., and Henderson, Johnny. "Triple positive solutions for $(k,n-k)$ conjugate boundary value problems." Mathematica Slovaca 51.3 (2001): 313-320. <http://eudml.org/doc/31955>.

@article{Davis2001,
author = {Davis, John M., Henderson, Johnny},
journal = {Mathematica Slovaca},
keywords = {ordinary differential equation; boundary value problem; Green function; multiple solution; fixed-point},
language = {eng},
number = {3},
pages = {313-320},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Triple positive solutions for $(k,n-k)$ conjugate boundary value problems},
url = {http://eudml.org/doc/31955},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Davis, John M.
AU - Henderson, Johnny
TI - Triple positive solutions for $(k,n-k)$ conjugate boundary value problems
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 3
SP - 313
EP - 320
LA - eng
KW - ordinary differential equation; boundary value problem; Green function; multiple solution; fixed-point
UR - http://eudml.org/doc/31955
ER -

References

top
  1. ANDERSON D., Multiple positive solutions for a three-point boundary value problem, Math. Comput. Modelling 27 (1998), 49-57. (1998) Zbl0906.34014MR1620897
  2. AVERY R. I., Existence of multiple positive solutions to a conjugate boundary value problem, Math. Sci. Res. Hot-Line 2 (1998), 1-6. (1998) Zbl0960.34503MR1604142
  3. AVERY R.-PETERSON A., Multiple positive solutions of a discrete second order conjugate problem, Panamer. Math. J. 8 (1998), 1-12. (1998) Zbl0959.39006MR1642636
  4. CHYAN C. J.-DAVIS J. M., Existence of triple positive solutions for ( n , p ) and ( p , n ) boundary value problems, Commun. Aррl. Anal. (To appear). Zbl1085.34512
  5. CHYAN C. J.-DAVIS J. M.-YIN W. K. C, Existence of triple positive solutions for ( k , n - k ) right focal boundary value problems, Nonlinear Stud. 8 (2001), 33-52. Zbl0999.34019MR1856215
  6. ELOE P. W.-HENDERSON J., Inequalities based on a generalization of concavity, Proc. Amer. Math. Soc. 125 (1997), 2103-2108. (1997) Zbl0868.34008MR1376760
  7. GUO D.-LAKSHMIKANTHAM V., Nonlinear Problems in Abstract Cones, Academic Press, San Diego, 1988. (1988) Zbl0661.47045MR0959889
  8. HENDERSON J., Multiple symmetric positive solutions for discrete Lidstone boundary value problems, Dynam. Contin. Discrete Impuls. Systems 7 (2000), 577-585. Zbl0969.39003MR1795819
  9. HENDERSON J.-THOMPSON H. B., Multiple symmetric solutions for a second order boundary value problem, Proc. Amer. Math. Soc. 128 (2000), 2373-2379. MR1709753
  10. LEGGETT R.-WILLIAMS L., Multiple positive fixed points of nonlinear operators on ordered Banach spaces, Indiana Univ. Math. J. 28 (1979), 673-688. (1979) Zbl0421.47033MR0542951
  11. WONG P. J. Y.-AGARWAL R. P., Results and estimates on multiple solutions of Lidstone boundary value problems, Acta Math. Hungar. 86 (2000), 137-168. Zbl0966.34017MR1728595
  12. WONG P. J. Y.-AGARWAL R. P., Multiple solutions of difference and partial difference equations with Lidstone conditions, Math. Comput. Modelling 32 (2000), 699-725. Zbl0973.39001MR1791177

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.