Weak solution for fractional order integral equations in reflexive Banach spaces

Hussein A. H. Salem; Ahmed M. A. El-Sayed

Mathematica Slovaca (2005)

  • Volume: 55, Issue: 2, page 169-181
  • ISSN: 0232-0525

How to cite

top

Salem, Hussein A. H., and El-Sayed, Ahmed M. A.. "Weak solution for fractional order integral equations in reflexive Banach spaces." Mathematica Slovaca 55.2 (2005): 169-181. <http://eudml.org/doc/31966>.

@article{Salem2005,
author = {Salem, Hussein A. H., El-Sayed, Ahmed M. A.},
journal = {Mathematica Slovaca},
keywords = {fractional calculus; pseudo solution; Cauchy problem},
language = {eng},
number = {2},
pages = {169-181},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Weak solution for fractional order integral equations in reflexive Banach spaces},
url = {http://eudml.org/doc/31966},
volume = {55},
year = {2005},
}

TY - JOUR
AU - Salem, Hussein A. H.
AU - El-Sayed, Ahmed M. A.
TI - Weak solution for fractional order integral equations in reflexive Banach spaces
JO - Mathematica Slovaca
PY - 2005
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 55
IS - 2
SP - 169
EP - 181
LA - eng
KW - fractional calculus; pseudo solution; Cauchy problem
UR - http://eudml.org/doc/31966
ER -

References

top
  1. AL-ABEDEEN A. Z.-ARORA H. L., A global existence and uniqueness theorem for ordinary differential equations of generalized order, Canad. Math. Bull. 21 (1978), 267-271. (1978) Zbl0397.34003MR0511571
  2. ARINO O.-GAUTIER S.-PENOT T. P., A fixed point theorem for sequentially continuous mappings with application to ordinary differential equations, Funkcial. Ekvac 27 (1984), 273-279. (1984) Zbl0599.34008MR0794756
  3. BASSAM M., Some existence theorems on differential equations of generalized order, J. Reine Angew. Math. 218 (1965), 70-78. (1965) Zbl0156.30804MR0179405
  4. CICHOŃ M., Weak solutions of ordinary differential equations in Banach spaces, Discuss. Math. Differ. Inch Control Optim. 15 (1995), 5-14. (1995) MR1344523
  5. CICHOŃ M.-EL-SAYED A. M.-SALEM H. A. H., Existence theorem for nonlinear functional integral equations of fractional orders, Comment. Math. Prace Mat. 41 (2001), 59-67. MR1876711
  6. CRAMER E.-LAKSHMIKANTHAM V.-MITCHELL A. R., On the existence of weak solutions of differential equations in nonreflexive Banach spaces, Nonlinear Anal. 2 (1978), 259-262. (1978) Zbl0379.34041MR0512280
  7. DIESTEL J.-UHL J. J., Jr., Vector Measures, Math. Surveys Monogr. 15, Amer. Math. Soc, Providence, R.I., 1977. (1977) Zbl0369.46039MR0453964
  8. EDGAR G. A., Geometry and the Pettis-integral, Indiana Univ. Math. J. 26 (1977), 663-677. (1977) 
  9. EDGAR G. A., Geometry and the Pettis-integral II, Indiana Univ. Math. J. 28 (1979), 559-579. (1979) 
  10. EL-SAYED A. M.-EL-SAYED W. G.-MOUSTAFA O. L., On some fractional functional equations, Pure. Math. Appl. 6 (1995), 321-332. (1995) Zbl0867.49001MR1399296
  11. EL-SAYED A. M. A., Nonlinear functional differential equations of arbitrary orders, Nonlinear Anal. 33 (1998), 181-186. (1998) Zbl0934.34055MR1621105
  12. EL-SAYED A. M. A.-IBRAHIM A. G., Set-valued integral equations of arbitrary (fractional) order, Appl. Math. Comput. 118 (2001), 113-121. MR1805164
  13. GEITZ R. F., Pettis integration, Proc Amer. Math. Soc 82 (1981), 81-86. (1981) Zbl0506.28007MR0603606
  14. GEITZ R. F., Geometry and the Pettis integration, Trans. Amer. Math. Soc. 269 (1982), 535-548. (1982) MR0637707
  15. HADID S. B., Local and global existence theorem on differential equation on non integral order, Math. Z. 7 (1995), 101-105. (1995) MR1330572
  16. HILLE E.-PHILLIPS R. S., Functional Analysis and Semi-groups, Amer. Math. Soc. Colloq. Publ. 31, Amer. Math. Soc, Providence, R.I., 1957. (1957) MR0089373
  17. KNIGHT W. J., Solutions of differential equations in B-spaces, Duke Math. J. 41 (1974), 437-442. (1974) Zbl0288.34063MR0344624
  18. KUBIACZYK I.-SZUFLA S., Kneser's theorem for weak solutions of ordinary differential equations in Banach spaces, Publ. Inst. Math. (Beograd) (N.S.) 32(46) (1982), 99-103. (1982) Zbl0516.34058MR0710975
  19. MILLER K. S.-ROSS B., An Introduction to the Fractional Calculus and Fractional Differential Equations, John Wiley, New York, 1993. (1993) Zbl0789.26002MR1219954
  20. MITCHELL A. R.-SMITH, CH., An existence theorem for weak solutions of differential equations in Banach spaces, In: Nonlinear Equations in Abstract Spaces. Proc. Int. Symp., Arlington 1977, 1978, pp. 387-403. (1977) MR0502554
  21. O'REGAN D., Fixed point theory for weakly sequentially continuous mapping, Math. Comput. Modeling 27 (1998), 1-14. (1998) 
  22. PETTIS B. J., On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), 277-304. (1938) Zbl0019.41603MR1501970
  23. PHILLIPS R. S., Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114-115. (1940) Zbl0022.31902MR0002707
  24. PODLUBNY I.-EL-SAYED A. M. A., On two definitions of fractional calculus, In: Preprint UEF-03-96, Slovak Academy of Sciences, Institute of Experimental Phys., 1996. (1996) 
  25. PODLUBNY I., Fractional Differential Equation, Acad. Press, San Diego-New York-London, 1999. (1999) 
  26. SALEM H. A. H.-EL-SAYED A. M. A.-MOUSTAFA O. L., Continuous solutions of some nonlinear fractional order integral equations, Comment. Math. Prace Mat. 42 (2002), 209-220. MR1949636
  27. SALEM H. A. H.-VÄTH M., An abstract Gronwall lemma and application to global existence results for functional differential and integral equations of fractional order, J. Integral Equations Appl. 16 (2004), 411-439. MR2133908
  28. SAMKO S.-KILBAS A.-MARICHEV O., Fractional Integrals and Derivatives: Theory and Applications, Gordon and Breach Sci. PubL, New York, 1993. (1993) Zbl0818.26003MR1347689
  29. VÄTH M., Ideal spaces, Lecture Notes in Math. 1664, Springer, Berlin-Heidelberg, 1997. (1997) Zbl0896.46018MR1463946
  30. SZEP A., Existence theorem for weak solutions of differential equations in Banach spaces, Studia Sci. Math. Hungar. 6 (1971), 197-203. (1971) MR0330688

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.