Some families of analytic functions with negative coefficients
H. M. Srivastava; J. Patel; Pulak Sahoo
Mathematica Slovaca (2001)
- Volume: 51, Issue: 4, page 421-439
- ISSN: 0139-9918
Access Full Article
topHow to cite
topSrivastava, H. M., Patel, J., and Sahoo, Pulak. "Some families of analytic functions with negative coefficients." Mathematica Slovaca 51.4 (2001): 421-439. <http://eudml.org/doc/31975>.
@article{Srivastava2001,
author = {Srivastava, H. M., Patel, J., Sahoo, Pulak},
journal = {Mathematica Slovaca},
keywords = {analytic function; Sălăgean derivative; Hadamard product (or convolution); integral operator; fractional calculus operator; distortion theorem; Sălăgean derivatives; fractional calculus},
language = {eng},
number = {4},
pages = {421-439},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Some families of analytic functions with negative coefficients},
url = {http://eudml.org/doc/31975},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Srivastava, H. M.
AU - Patel, J.
AU - Sahoo, Pulak
TI - Some families of analytic functions with negative coefficients
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 4
SP - 421
EP - 439
LA - eng
KW - analytic function; Sălăgean derivative; Hadamard product (or convolution); integral operator; fractional calculus operator; distortion theorem; Sălăgean derivatives; fractional calculus
UR - http://eudml.org/doc/31975
ER -
References
top- ALTINTAŞ O., On a subclass of certain starlike functions with negative coefficients, Math. Japon. 36 (1991), 489-495. (1991) Zbl0739.30011MR1109235
- AOUF M. K., On fractional derivatives and fractional integrals of certain subclasses of starlike and convex functions, Math. Japon. 35 (1990), 831-837. (1990) Zbl0714.30016MR1073886
- AOUF M. K.-SRIVASTAVA H. M., Some families of starlike functions with negative coefficients, J. Math. Anal. Appl. 203 (1996), 762-790. (1996) Zbl0863.30012MR1417129
- CHATTERJEA S. K., On starlike functions, J. Pure Math. 1 (1981), 23-26. (1981) Zbl0514.30010MR0696324
- DUREN P. L., Univalent Functions, Grundlehren Math. Wiss. 259, Springer-Verlag, New York-Berlin, 1983. (1983) Zbl0514.30001MR0708494
- KANAS S.-SRIVASTAVA H. M., Some criteria for univalence related to Ruscheweyh and Sălăgean derivatives, Complex Variables Theory Appl. 38 (1999), 263-275. (1999) Zbl1018.30009MR1694321
- OWA S., On distortion theorems. I., Kyungpook Math. J. 18 (1978), 55-59. (1978) MR0507718
- PODLUBNY I., Fractional Differential Equations, Math. Sci. Engrg. 198, Academic Press, New York-London-Sydney-Toronto, 1999. (198,) MR1658022
- SÄLÄGEAN G. ST., Subclasses of univalent functions, In: Complex Analysis. Fifth Romanian-Finnish Seminar, Part I (Bucharest, 1981). Lecture Notes in Math. 1013, Springeг-Veгlag, Beгlin-New Yoгk, 1983, pp. 362-372. (1981) MR0738107
- SCHILD A.-SILVERMAN H., Convolutions of univalent functions with negative coefficients, Ann. Univ. Maгiae Curie-Skłodowska Sect. A 29 (1975), 99-106. (1975) MR0457698
- SILVERMAN H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116. (1975) Zbl0311.30007MR0369678
- SRIVASTAVA H. M.-AOUF M. K., A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I. II., J. Math. Anal. Appl. 171; 192 (1992; 1995), 1-13; 673-688. (192) MR1336471
- Univalent Functions, Fractional Calculus, and Their Applications, (H. M. Srivastava, S. Owa, eds.), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New Yoгk-Chichester-Brisbajie-Toгonto, 1989. (1989) Zbl0683.00012MR1199135
- Current Topics in Analytic Function Theory, (H. M. Srivastava, S. Owa, eds.), World Scientific Publishing Company, Singapore-New Jersey-London-Hong Kong, 1992. (1992) Zbl0976.00007MR1232424
- SRIVASTAVA H. M.-OWA S.-CHATTERJEA S. K., A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77 (1987), 115-124. (1987) Zbl0596.30018MR0904614
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.