Some families of analytic functions with negative coefficients

H. M. Srivastava; J. Patel; Pulak Sahoo

Mathematica Slovaca (2001)

  • Volume: 51, Issue: 4, page 421-439
  • ISSN: 0232-0525

How to cite

top

Srivastava, H. M., Patel, J., and Sahoo, Pulak. "Some families of analytic functions with negative coefficients." Mathematica Slovaca 51.4 (2001): 421-439. <http://eudml.org/doc/31975>.

@article{Srivastava2001,
author = {Srivastava, H. M., Patel, J., Sahoo, Pulak},
journal = {Mathematica Slovaca},
keywords = {analytic function; Sălăgean derivative; Hadamard product (or convolution); integral operator; fractional calculus operator; distortion theorem; Sălăgean derivatives; fractional calculus},
language = {eng},
number = {4},
pages = {421-439},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Some families of analytic functions with negative coefficients},
url = {http://eudml.org/doc/31975},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Srivastava, H. M.
AU - Patel, J.
AU - Sahoo, Pulak
TI - Some families of analytic functions with negative coefficients
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 4
SP - 421
EP - 439
LA - eng
KW - analytic function; Sălăgean derivative; Hadamard product (or convolution); integral operator; fractional calculus operator; distortion theorem; Sălăgean derivatives; fractional calculus
UR - http://eudml.org/doc/31975
ER -

References

top
  1. ALTINTAŞ O., On a subclass of certain starlike functions with negative coefficients, Math. Japon. 36 (1991), 489-495. (1991) Zbl0739.30011MR1109235
  2. AOUF M. K., On fractional derivatives and fractional integrals of certain subclasses of starlike and convex functions, Math. Japon. 35 (1990), 831-837. (1990) Zbl0714.30016MR1073886
  3. AOUF M. K.-SRIVASTAVA H. M., Some families of starlike functions with negative coefficients, J. Math. Anal. Appl. 203 (1996), 762-790. (1996) Zbl0863.30012MR1417129
  4. CHATTERJEA S. K., On starlike functions, J. Pure Math. 1 (1981), 23-26. (1981) Zbl0514.30010MR0696324
  5. DUREN P. L., Univalent Functions, Grundlehren Math. Wiss. 259, Springer-Verlag, New York-Berlin, 1983. (1983) Zbl0514.30001MR0708494
  6. KANAS S.-SRIVASTAVA H. M., Some criteria for univalence related to Ruscheweyh and Sălăgean derivatives, Complex Variables Theory Appl. 38 (1999), 263-275. (1999) Zbl1018.30009MR1694321
  7. OWA S., On distortion theorems. I., Kyungpook Math. J. 18 (1978), 55-59. (1978) MR0507718
  8. PODLUBNY I., Fractional Differential Equations, Math. Sci. Engrg. 198, Academic Press, New York-London-Sydney-Toronto, 1999. (198,) MR1658022
  9. SÄLÄGEAN G. ST., Subclasses of univalent functions, In: Complex Analysis. Fifth Romanian-Finnish Seminar, Part I (Bucharest, 1981). Lecture Notes in Math. 1013, Springeг-Veгlag, Beгlin-New Yoгk, 1983, pp. 362-372. (1981) MR0738107
  10. SCHILD A.-SILVERMAN H., Convolutions of univalent functions with negative coefficients, Ann. Univ. Maгiae Curie-Skłodowska Sect. A 29 (1975), 99-106. (1975) MR0457698
  11. SILVERMAN H., Univalent functions with negative coefficients, Proc. Amer. Math. Soc. 51 (1975), 109-116. (1975) Zbl0311.30007MR0369678
  12. SRIVASTAVA H. M.-AOUF M. K., A certain fractional derivative operator and its applications to a new class of analytic and multivalent functions with negative coefficients. I. II., J. Math. Anal. Appl. 171; 192 (1992; 1995), 1-13; 673-688. (192) MR1336471
  13. Univalent Functions, Fractional Calculus, and Their Applications, (H. M. Srivastava, S. Owa, eds.), Halsted Press (Ellis Horwood Limited, Chichester), John Wiley and Sons, New Yoгk-Chichester-Brisbajie-Toгonto, 1989. (1989) Zbl0683.00012MR1199135
  14. Current Topics in Analytic Function Theory, (H. M. Srivastava, S. Owa, eds.), World Scientific Publishing Company, Singapore-New Jersey-London-Hong Kong, 1992. (1992) Zbl0976.00007MR1232424
  15. SRIVASTAVA H. M.-OWA S.-CHATTERJEA S. K., A note on certain classes of starlike functions, Rend. Sem. Mat. Univ. Padova 77 (1987), 115-124. (1987) Zbl0596.30018MR0904614

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.