Statistical maps. II: Operational random variables and the Bell phenomenon

Sławomir Bugajski

Mathematica Slovaca (2001)

  • Volume: 51, Issue: 3, page 343-361
  • ISSN: 0139-9918

How to cite

top

Bugajski, Sławomir. "Statistical maps. II: Operational random variables and the Bell phenomenon." Mathematica Slovaca 51.3 (2001): 343-361. <http://eudml.org/doc/32044>.

@article{Bugajski2001,
author = {Bugajski, Sławomir},
journal = {Mathematica Slovaca},
keywords = {statistical map; operational random variable; Bell phenomenon; operational probability theory},
language = {eng},
number = {3},
pages = {343-361},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Statistical maps. II: Operational random variables and the Bell phenomenon},
url = {http://eudml.org/doc/32044},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Bugajski, Sławomir
TI - Statistical maps. II: Operational random variables and the Bell phenomenon
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 3
SP - 343
EP - 361
LA - eng
KW - statistical map; operational random variable; Bell phenomenon; operational probability theory
UR - http://eudml.org/doc/32044
ER -

References

top
  1. BELL J. S., On the Einstein-Podolsky-Rosen paradox, Physics 1 (1964), 195-200. (1964) 
  2. FINE A., Hidden variables, joint probability, and the Bell inequalities, Phys. Rev. Lett. 48 (1982), 291-295. (1982) MR0642943
  3. FINE A., Joint distributions, quantum correlations, and commuting observables, J. Math. Phys. 23 (1982), 1306-1310. (1982) MR0666180
  4. BELTRAMETTI E. G.-BUGAJSKI S., The Bell phenomenon in classical frameworks, J. Phys. A 29 (1996), 247-261. (1996) Zbl0914.46060MR1381557
  5. ACCARDI L.-CECCHINI, C, Conditional expectations on von Neumann algebras and a theorem of Takesaki, J. Funct. Anal. 45 (1982), 245-273. (1982) MR0647075
  6. ACCARDI L.-FRIGERIO A.-LEWIS J. T., Quantum stochastic processes, Publ. Res. Inst. Math. Sci. 18 (1982), 97-133. (1982) Zbl0498.60099MR0660823
  7. STREATER R. F., Classical and quantum probability, arXiv:math-ph/0002029 (27 Feb 2000). Zbl0981.81006MR1768632
  8. BUSCH P.- GRABOWSKI M.-LAHTI P. J., Operational Quantum Physics, Springer-Verlag, Berlin, 1995. (1995) MR1356220
  9. BUGAJSKI S., Fundamentals of fuzzy probability theory, Internat. J. Theoret. Phys. 35 (1996), 2229-2244. (1996) Zbl0872.60003MR1423402
  10. BUGAJSKI S.-HELLWIG K.-E.-STULPE W., On fuzzy random variables and statistical maps, Rep. Math. Phys. 41 (1998), 1-11. (1998) Zbl1026.60501MR1617902
  11. BUGAJSKI S., Fuzzy stochastic processes, Open Syst. Inf. Dyn. 5 (1998), 169-185. (1998) Zbl0908.60044
  12. GUDDER S., Fuzzy probability theory, Demonstratio Math. 31 (1998), 235-254. (1998) Zbl0984.60001MR1623780
  13. BUGAJSKI S., Statistical maps I. Basic properties, Math. Slovaca 51 (2001), 321 342. Zbl1088.81021MR1842320
  14. BUGAJSKI S., Classical and quantal in one or How to describe mesoscopic systems, Molecular Phys. Rep. 11 (1995), 161-171. (1995) 
  15. PURI M. L.-RALESCU D. A., Fuzzy random variables, J. Math. Anal. Appl. 114 (1986), 409-422. (1986) Zbl0605.60038MR0833596
  16. RIEČAN B.-NEUBRUNN T., Integral, Measure, and Ordering, Math. Appl. 411, Kluwer, Dordrecht, 1997. (1997) Zbl0916.28001MR1489521
  17. BAUER H., Probability Theory and Elements of Measure Theory, Academic Press, London, 1981. (1981) Zbl0466.60001MR0636091
  18. HOLEVO A. S., Probabilistic and Statistical Aspects of Quantum Theory, North-Holland, Amsterdam, 1982. (1982) Zbl0497.46053MR0681693
  19. BUSCH P.-LAHTI P. J.-MITTELSTAEDT P., The Quantum Theory of Measurement, (2nd ed.), Springer-Verlag, Berlin, 1996. (1996) Zbl0868.46051MR1419313
  20. ARAKI H., A remark on Machida-Namiki theory of measurement, Progr. Theoret. Phys. 64 (1980), 719-730. (1980) Zbl1097.81503MR0596946
  21. VON NEUMANN J., Mathematical Foundations of Quantum Mechanics, Princeton University Press, Princeton, N.J., 1955. (1955) Zbl0064.21503MR0066944
  22. MISRA B., On a new definition of quantal states, In: Physical Reality and Mathematical Description (C P. Enz, J. Mehra, eds.), D. Reidel Publishing Company, Dordrecht-Holland, 1974, pp. 455-476. (1974) 
  23. BELTRAMETTI E. G.-BUGAJSKI S., Quantum observables in classical frameworks, Internat. J. Theoret. Phys. 34 (1995), 1221-1229. (1995) Zbl0850.81019MR1353665
  24. BELTRAMETTI E. G.-BUGAJSKI S., A classical extension of quantum mechanics, J. Phys. A 28 (1995), 3329-3343. (1995) Zbl0859.46049MR1344371
  25. BOHM D., Quantum Theory, Prentice-Hall, Inc, Englewood Cliffs, NJ., 1951. (1951) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.