Global canonical forms of linear differential equations

František Neuman

Mathematica Slovaca (1983)

  • Volume: 33, Issue: 4, page 389-394
  • ISSN: 0139-9918

How to cite

top

Neuman, František. "Global canonical forms of linear differential equations." Mathematica Slovaca 33.4 (1983): 389-394. <http://eudml.org/doc/32051>.

@article{Neuman1983,
author = {Neuman, František},
journal = {Mathematica Slovaca},
keywords = {Laguerre-Forsyth form; Halphen form; global forms},
language = {eng},
number = {4},
pages = {389-394},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Global canonical forms of linear differential equations},
url = {http://eudml.org/doc/32051},
volume = {33},
year = {1983},
}

TY - JOUR
AU - Neuman, František
TI - Global canonical forms of linear differential equations
JO - Mathematica Slovaca
PY - 1983
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 33
IS - 4
SP - 389
EP - 394
LA - eng
KW - Laguerre-Forsyth form; Halphen form; global forms
UR - http://eudml.org/doc/32051
ER -

References

top
  1. BORUVKA O., Linear Differential Transformations of the Second Order, The English Univ. Press, London, 1971. (1971) Zbl0222.34002MR0463539
  2. BIRKHOFF G. D., On the solutions of oгdinaгy linear homogeneous differential equations of the third order, Annals of Math. 12, 1910/11, 103-123. (1910) 
  3. HALPHEN G. H., Mémoire suг la réduction des équations difféгentielles linéaiгes aux foгmes intégгables, Mémoiгes pгésentés par divers savants à ľacadémie des sciences de ľinstitut de France 28, 1884, 1-301. 
  4. HUSTÝ Z., Die Iteration homogener íinearer Differentialgleichungen, Publ. Fac. Sci. Univ. J. E. Purkyně Bгno, 449, 1964, 23-56. (1964) MR0196166
  5. MAC LANE S., BIRKHOFF G., Algebra, The Macmillan Comp., New York, 1965. (1965) 
  6. NEUMAN F., Geometrical approach to linear differential equations of the n-th order, Rend. Mat. 5, 1972, 579-602. (1972) Zbl0257.34029MR0324141
  7. NEUMAN F., On a pгoblem of a canonical parametrization of continuous functions, (To appeaг.) 
  8. STÄCKEL P., Übeг Transformationen von Diffeгentialgleichungen, J. Reine Angew. Math. 111, 1893, 290-302. 
  9. WILCZYNSKI E. J., Pгojective Differential Geometry of Cuгves and Ruled Surfaces, Teubneг, Leipzig, 1906. (1906) 

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.