On squares of complementary graphs
Mathematica Slovaca (1980)
- Volume: 30, Issue: 3, page 247-249
- ISSN: 0139-9918
Access Full Article
topHow to cite
topReferences
top- BEHZAD M., CHARTRAND G., Introduction to the Theory of Gгaphs, Allyn and Bacon, Boston 1971. (1971) MR0432461
- CHARTRAND G., HOBBS A. M., JUNG H. A., NASH-WILLIAMS C. St. J. A., The square of a block is hamiltonian connected, J. Comb. Theory 16B, 1974, 290-292. (1974) Zbl0277.05129MR0345865
- FAUDREE R. J., SCHELP R. H., The squaгe of a block is stгongly path connected, J. Comb. Theory 20B, 1976, 47-61. (1976) MR0424609
- FLEISCHNER H., The squaгe of every two-connected graph is hamiltonian, J. Comb. Theory 16B, 1974, 29-34. (1974) MR0332573
- FLEISCHNER H., In the squaгe of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivaient concepts, Monatshefte Math. 82, 1976, 125-149. (1976) MR0427135
- FLEISCHNER H., HOBBS A. M., A necessary condition foг the square of a graph to be hamiltonian, J. Comb. Theory 19, 1975, 97-118. (1975) MR0414433
- HARARY F., Graph Theory, Addison-Wesley, Reading (Mass.) 1969. (1969) Zbl0196.27202MR0256911
- HOBBS A. M., The square of a block is vertex pancyclic, J. Comb. Theory 20B, 1976, 1-4. (1976) Zbl0321.05135MR0416980
- NEBESKÝ L., A theoгem on hamiltonian line graphs, Comment. Math. Univ. Carolinae 14, 1973, 107-111. (1973) MR0382068
- NEBESKÝ L., On pancyclic line graphs, Czechoslovak Mat. J. 28 (103), 1978, 650-655. (1978) Zbl0379.05045MR0506438
- NEUMANN F., On a certain ordering of the vertices of a tгee, Časopis pěst. mat. 89, 1964, 323-339. (1964) MR0181587