On squares of complementary graphs
Mathematica Slovaca (1980)
- Volume: 30, Issue: 3, page 247-249
- ISSN: 0139-9918
Access Full Article
topHow to cite
topNebeský, Ladislav. "On squares of complementary graphs." Mathematica Slovaca 30.3 (1980): 247-249. <http://eudml.org/doc/32061>.
@article{Nebeský1980,
author = {Nebeský, Ladislav},
journal = {Mathematica Slovaca},
keywords = {complementary graphs; hamiltonian-connected; square of a graph},
language = {eng},
number = {3},
pages = {247-249},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On squares of complementary graphs},
url = {http://eudml.org/doc/32061},
volume = {30},
year = {1980},
}
TY - JOUR
AU - Nebeský, Ladislav
TI - On squares of complementary graphs
JO - Mathematica Slovaca
PY - 1980
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 30
IS - 3
SP - 247
EP - 249
LA - eng
KW - complementary graphs; hamiltonian-connected; square of a graph
UR - http://eudml.org/doc/32061
ER -
References
top- BEHZAD M., CHARTRAND G., Introduction to the Theory of Gгaphs, Allyn and Bacon, Boston 1971. (1971) MR0432461
- CHARTRAND G., HOBBS A. M., JUNG H. A., NASH-WILLIAMS C. St. J. A., The square of a block is hamiltonian connected, J. Comb. Theory 16B, 1974, 290-292. (1974) Zbl0277.05129MR0345865
- FAUDREE R. J., SCHELP R. H., The squaгe of a block is stгongly path connected, J. Comb. Theory 20B, 1976, 47-61. (1976) MR0424609
- FLEISCHNER H., The squaгe of every two-connected graph is hamiltonian, J. Comb. Theory 16B, 1974, 29-34. (1974) MR0332573
- FLEISCHNER H., In the squaгe of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivaient concepts, Monatshefte Math. 82, 1976, 125-149. (1976) MR0427135
- FLEISCHNER H., HOBBS A. M., A necessary condition foг the square of a graph to be hamiltonian, J. Comb. Theory 19, 1975, 97-118. (1975) MR0414433
- HARARY F., Graph Theory, Addison-Wesley, Reading (Mass.) 1969. (1969) Zbl0196.27202MR0256911
- HOBBS A. M., The square of a block is vertex pancyclic, J. Comb. Theory 20B, 1976, 1-4. (1976) Zbl0321.05135MR0416980
- NEBESKÝ L., A theoгem on hamiltonian line graphs, Comment. Math. Univ. Carolinae 14, 1973, 107-111. (1973) MR0382068
- NEBESKÝ L., On pancyclic line graphs, Czechoslovak Mat. J. 28 (103), 1978, 650-655. (1978) Zbl0379.05045MR0506438
- NEUMANN F., On a certain ordering of the vertices of a tгee, Časopis pěst. mat. 89, 1964, 323-339. (1964) MR0181587
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.