On squares of complementary graphs

Ladislav Nebeský

Mathematica Slovaca (1980)

  • Volume: 30, Issue: 3, page 247-249
  • ISSN: 0232-0525

How to cite

top

Nebeský, Ladislav. "On squares of complementary graphs." Mathematica Slovaca 30.3 (1980): 247-249. <http://eudml.org/doc/32061>.

@article{Nebeský1980,
author = {Nebeský, Ladislav},
journal = {Mathematica Slovaca},
keywords = {complementary graphs; hamiltonian-connected; square of a graph},
language = {eng},
number = {3},
pages = {247-249},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On squares of complementary graphs},
url = {http://eudml.org/doc/32061},
volume = {30},
year = {1980},
}

TY - JOUR
AU - Nebeský, Ladislav
TI - On squares of complementary graphs
JO - Mathematica Slovaca
PY - 1980
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 30
IS - 3
SP - 247
EP - 249
LA - eng
KW - complementary graphs; hamiltonian-connected; square of a graph
UR - http://eudml.org/doc/32061
ER -

References

top
  1. BEHZAD M., CHARTRAND G., Introduction to the Theory of Gгaphs, Allyn and Bacon, Boston 1971. (1971) MR0432461
  2. CHARTRAND G., HOBBS A. M., JUNG H. A., NASH-WILLIAMS C. St. J. A., The square of a block is hamiltonian connected, J. Comb. Theory 16B, 1974, 290-292. (1974) Zbl0277.05129MR0345865
  3. FAUDREE R. J., SCHELP R. H., The squaгe of a block is stгongly path connected, J. Comb. Theory 20B, 1976, 47-61. (1976) MR0424609
  4. FLEISCHNER H., The squaгe of every two-connected graph is hamiltonian, J. Comb. Theory 16B, 1974, 29-34. (1974) MR0332573
  5. FLEISCHNER H., In the squaгe of graphs, hamiltonicity and pancyclicity, hamiltonian connectedness and panconnectedness are equivaient concepts, Monatshefte Math. 82, 1976, 125-149. (1976) MR0427135
  6. FLEISCHNER H., HOBBS A. M., A necessary condition foг the square of a graph to be hamiltonian, J. Comb. Theory 19, 1975, 97-118. (1975) MR0414433
  7. HARARY F., Graph Theory, Addison-Wesley, Reading (Mass.) 1969. (1969) Zbl0196.27202MR0256911
  8. HOBBS A. M., The square of a block is vertex pancyclic, J. Comb. Theory 20B, 1976, 1-4. (1976) Zbl0321.05135MR0416980
  9. NEBESKÝ L., A theoгem on hamiltonian line graphs, Comment. Math. Univ. Carolinae 14, 1973, 107-111. (1973) MR0382068
  10. NEBESKÝ L., On pancyclic line graphs, Czechoslovak Mat. J. 28 (103), 1978, 650-655. (1978) Zbl0379.05045MR0506438
  11. NEUMANN F., On a certain ordering of the vertices of a tгee, Časopis pěst. mat. 89, 1964, 323-339. (1964) MR0181587

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.