On generalized measures of fuzzy entropy

D. S. Hooda

Mathematica Slovaca (2004)

  • Volume: 54, Issue: 3, page 315-325
  • ISSN: 0139-9918

How to cite

top

Hooda, D. S.. "On generalized measures of fuzzy entropy." Mathematica Slovaca 54.3 (2004): 315-325. <http://eudml.org/doc/32134>.

@article{Hooda2004,
author = {Hooda, D. S.},
journal = {Mathematica Slovaca},
keywords = {membership function; fuzzy set; crisp set; convex function; fuzzy entropy; concave function; global maximum; fuzzy directed divergence},
language = {eng},
number = {3},
pages = {315-325},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On generalized measures of fuzzy entropy},
url = {http://eudml.org/doc/32134},
volume = {54},
year = {2004},
}

TY - JOUR
AU - Hooda, D. S.
TI - On generalized measures of fuzzy entropy
JO - Mathematica Slovaca
PY - 2004
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 54
IS - 3
SP - 315
EP - 325
LA - eng
KW - membership function; fuzzy set; crisp set; convex function; fuzzy entropy; concave function; global maximum; fuzzy directed divergence
UR - http://eudml.org/doc/32134
ER -

References

top
  1. BHANDARI D.-PAL N. R., Some new information measures for fuzzy sets, Inform. Sci. 67 (1993), 204-228. (1993) Zbl0763.94030MR1195247
  2. BOEKEE D. E.-LUBBE J. C. A., The R -norm information measures, Inform. and Control 45 (1980), 136-155. (1980) MR0584829
  3. DELUCA A.-TERMINI S., A definition of non-probabilistic entropy in the setting of fuzzy set theory, Inform. and Control 20 (1971), 301-312. (1971) 
  4. HARVDA J. H.-CHARVAT F., Quantification method of classification processes-concept of α -entropy, Kybernetika 3 (1967), 30-35. (1967) MR0209067
  5. KAPUR J. N., Measures of Fuzzy Information, Mathematical Sciences Trust Society, New Delhi. MR1479891
  6. KAPUR J. N., Four families of measures of entropy, Indian J. Pure Appl. Math. 17 (1986), 429-449. (1986) Zbl0589.62007MR0840750
  7. KAUFMAN A., Fuzzy Subsets, Fundamental Theoretical Elements 3, Academic Press, New York, 1980. (1980) 
  8. KULLBACK S., Information Theory and Sufficiency, Willey and Sons, New Delhi, 1959. (1959) MR0103557
  9. KULLBACK S.-LEIBLER R. A., On information and sufficiency, Ann. Math. Stat. 22 (1951), 79-86. (1951) Zbl0042.38403MR0039968
  10. PAL N. R.-PAL S. K., Object background segmentation using new definition of entropy, Proc. IEEE 136 (1989), 284-295. (1989) 
  11. RENYI A., On measures of entropy and information, In: Proc. 4th Berkeley Symp. Math. Stat. Probab. 1, 1961, pp. 547-561. (1961) Zbl0106.33001MR0132570
  12. SHARMA B. D.-TANEJA I. J., Entropy of type ( α , β ) and other generalized measures of information theory, Mathematika 22 (1995), 205-215. (1995) MR0398670
  13. SHARMA B. D.-MITTAL D. P., New non-additive measures of entropy for discrete probability distributions, J. Math. Sci (Calcutta) 10 (1975), 28-40. (1975) MR0539493
  14. SHANNON C. E., The mathematical theory of communication, Bell Syst. Tech. Journal 27 (1948), 423-467. (1948) MR0026286
  15. ZADEH L. A., Fuzzy sets, Inform. and Control 8 (1966), 94-102. (1966) Zbl0263.02028

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.