Gröbner bases and the immersion of real flag manifolds in Euclidean space
Mirian Percia Mendes; Antonio Conde
Mathematica Slovaca (2001)
- Volume: 51, Issue: 1, page 107-123
- ISSN: 0232-0525
Access Full Article
topHow to cite
topMendes, Mirian Percia, and Conde, Antonio. "Gröbner bases and the immersion of real flag manifolds in Euclidean space." Mathematica Slovaca 51.1 (2001): 107-123. <http://eudml.org/doc/32139>.
@article{Mendes2001,
author = {Mendes, Mirian Percia, Conde, Antonio},
journal = {Mathematica Slovaca},
keywords = {immersion; real flag manifold; Euclidean space; differentiable mapping; bundle; homomorphism; Stiefel-Whitney classes},
language = {eng},
number = {1},
pages = {107-123},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Gröbner bases and the immersion of real flag manifolds in Euclidean space},
url = {http://eudml.org/doc/32139},
volume = {51},
year = {2001},
}
TY - JOUR
AU - Mendes, Mirian Percia
AU - Conde, Antonio
TI - Gröbner bases and the immersion of real flag manifolds in Euclidean space
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 1
SP - 107
EP - 123
LA - eng
KW - immersion; real flag manifold; Euclidean space; differentiable mapping; bundle; homomorphism; Stiefel-Whitney classes
UR - http://eudml.org/doc/32139
ER -
References
top- ADAMS W. W.-LOUSTAUNAU P., An Introduction to Gröbner Bases, Grad. Stud. Math. 3, Amer. Math. Soc, Providence, RI, 1994. (1994) Zbl0803.13015MR1287608
- BARTÍK V.-KORBAŠ J., Stiefel-Whitney characteristic classes and parallelizability of Grassmann manifolds, Rend. Circ Mat. Palermo (2) Suppl. 6 (1984), 19-29. (1984) Zbl0566.57012MR0782702
- BOREL A., La cohomologie mod 2 de certains espaces homogènes, Comment. Math. Helv. 27 (1953), 165-97. (1953) Zbl0052.40301MR0057541
- BOREL A., Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compact, Ann. of Math. (2) 57 (1953), 11-207. (1953) MR0051508
- BOREL A.-HIRZEBRUCH F., Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-535. (1958) MR0102800
- CONDE A., B-Genus and Non-Embeddings, PhD Thesis, University of Chicago. Chicago, 1971. (1971) MR2611666
- CONDE A., Sobre as classes de Atiyah-Hirzebruch, de Thom, o problema do mergulho e variedades flâmulas, Tese (Livre-Docência)-Instituto de Ciências Matemáticas, Universidade de São Paulo, São Carlos, 1979. (1979)
- COX D.-LITTLE J.-O'SHEA D., Ideals, Varгeties and Algorithms, Undergrad. Texts Math., Springer, New York, 1992. (1992)
- GITLER S., Immersion and embedding of manifolds, In: Algebraic Topology. Proc Sympos. Pure Math. 22, Amer. Math. Soc, Providence, RI, 1971, pp. 87-96. (1971) Zbl0251.57011MR0315726
- HILLER H., Immersing homogeneous spaces in Euclidean space, Publ., Secc. Mat., Univ. Auton. Bare 26 (1982), 43-45. (1982) Zbl0545.57008MR0763333
- HILLER H.-STONG R. E., Immersion dimension for real grassmannians, Math. Ann. 255 (1981), 361-367. (1981) Zbl0439.51014MR0615856
- HIRSCH M. W., Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. (1959) Zbl0113.17202MR0119214
- HUSEMOLLER D., Fibre Bundles, Mc Graw-Hill, New York, 1966. (1966) Zbl0144.44804MR0229247
- KORBAŠ J., Vector fields on real flag manifolds, Ann. Global Anal. Geom. 3 (1985), 173 84. (1985) Zbl0579.57017MR0809636
- KORBAS J., Note on Stiefel-Whitney classes of flag manifolds, Rend. Circ. Mat. Palermo (2) Suppl. 16 (1987), 109-111. (1987) Zbl0661.57007MR0946716
- LAM K. Y., A formula for the tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213 (1975), 305-314. (1975) Zbl0312.55020MR0431194
- LANG S., Linear Algebra, (3rd ed.), Springer, New York, 1987. (1987) Zbl0618.15001MR0874113
- MENDES M. P., An algebraic problem and the software Maple, (In preparation). Zbl1027.13015
- MILNOR J. W.-STASHEFF J. D., Characteristic Classes, Ann. of Math. Stud. 76, Princeton Univ. Press-Univ. of Tokyo Press, Princeton, NJ, 1974. (1974) Zbl0298.57008MR0440554
- SANKARAN P.-ZVENGROWSKI P., On stable parallelizability of flag manifolds, Pacific J. Math. 122 (1986), 455-458. (1986) Zbl0557.14030MR0831125
- STEENROD N., The Topology of Fibre Bundles, Princeton Math. Ser. 14, Princeton Univ. Press, Princeton, NJ, 1951. (1951) Zbl0054.07103MR0039258
- STONG R. E., Immersions of real flag manifolds, Proc Amer. Math. Soc 88 (1983), 708-710. (1983) Zbl0532.57020MR0702304
- WHITEHEAD G. W., Elements ofmhomotopy theory, Grad. Texts in Math. 61, Springer-Verlag, Berlin-Heidelberg-New York, 1978. (1978) MR0516508
- ZVENGROWSKI P., Recent work in the parallelizability of flag manifolds, In: Contemp. Math. 58, Amer. Math. Soc, Providence, RI. 1987, pp. 129-137. (1987) MR0893852
NotesEmbed ?
topTo embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.