Gröbner bases and the immersion of real flag manifolds in Euclidean space

Mirian Percia Mendes; Antonio Conde

Mathematica Slovaca (2001)

  • Volume: 51, Issue: 1, page 107-123
  • ISSN: 0232-0525

How to cite

top

Mendes, Mirian Percia, and Conde, Antonio. "Gröbner bases and the immersion of real flag manifolds in Euclidean space." Mathematica Slovaca 51.1 (2001): 107-123. <http://eudml.org/doc/32139>.

@article{Mendes2001,
author = {Mendes, Mirian Percia, Conde, Antonio},
journal = {Mathematica Slovaca},
keywords = {immersion; real flag manifold; Euclidean space; differentiable mapping; bundle; homomorphism; Stiefel-Whitney classes},
language = {eng},
number = {1},
pages = {107-123},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Gröbner bases and the immersion of real flag manifolds in Euclidean space},
url = {http://eudml.org/doc/32139},
volume = {51},
year = {2001},
}

TY - JOUR
AU - Mendes, Mirian Percia
AU - Conde, Antonio
TI - Gröbner bases and the immersion of real flag manifolds in Euclidean space
JO - Mathematica Slovaca
PY - 2001
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 51
IS - 1
SP - 107
EP - 123
LA - eng
KW - immersion; real flag manifold; Euclidean space; differentiable mapping; bundle; homomorphism; Stiefel-Whitney classes
UR - http://eudml.org/doc/32139
ER -

References

top
  1. ADAMS W. W.-LOUSTAUNAU P., An Introduction to Gröbner Bases, Grad. Stud. Math. 3, Amer. Math. Soc, Providence, RI, 1994. (1994) Zbl0803.13015MR1287608
  2. BARTÍK V.-KORBAŠ J., Stiefel-Whitney characteristic classes and parallelizability of Grassmann manifolds, Rend. Circ Mat. Palermo (2) Suppl. 6 (1984), 19-29. (1984) Zbl0566.57012MR0782702
  3. BOREL A., La cohomologie mod 2 de certains espaces homogènes, Comment. Math. Helv. 27 (1953), 165-97. (1953) Zbl0052.40301MR0057541
  4. BOREL A., Sur la cohomologie des espaces fibres principaux et des espaces homogènes de groupes de Lie compact, Ann. of Math. (2) 57 (1953), 11-207. (1953) MR0051508
  5. BOREL A.-HIRZEBRUCH F., Characteristic classes and homogeneous spaces I, Amer. J. Math. 80 (1958), 458-535. (1958) MR0102800
  6. CONDE A., B-Genus and Non-Embeddings, PhD Thesis, University of Chicago. Chicago, 1971. (1971) MR2611666
  7. CONDE A., Sobre as classes de Atiyah-Hirzebruch, de Thom, o problema do mergulho e variedades flâmulas, Tese (Livre-Docência)-Instituto de Ciências Matemáticas, Universidade de São Paulo, São Carlos, 1979. (1979) 
  8. COX D.-LITTLE J.-O'SHEA D., Ideals, Varгeties and Algorithms, Undergrad. Texts Math., Springer, New York, 1992. (1992) 
  9. GITLER S., Immersion and embedding of manifolds, In: Algebraic Topology. Proc Sympos. Pure Math. 22, Amer. Math. Soc, Providence, RI, 1971, pp. 87-96. (1971) Zbl0251.57011MR0315726
  10. HILLER H., Immersing homogeneous spaces in Euclidean space, Publ., Secc. Mat., Univ. Auton. Bare 26 (1982), 43-45. (1982) Zbl0545.57008MR0763333
  11. HILLER H.-STONG R. E., Immersion dimension for real grassmannians, Math. Ann. 255 (1981), 361-367. (1981) Zbl0439.51014MR0615856
  12. HIRSCH M. W., Immersions of manifolds, Trans. Amer. Math. Soc. 93 (1959), 242-276. (1959) Zbl0113.17202MR0119214
  13. HUSEMOLLER D., Fibre Bundles, Mc Graw-Hill, New York, 1966. (1966) Zbl0144.44804MR0229247
  14. KORBAŠ J., Vector fields on real flag manifolds, Ann. Global Anal. Geom. 3 (1985), 173 84. (1985) Zbl0579.57017MR0809636
  15. KORBAS J., Note on Stiefel-Whitney classes of flag manifolds, Rend. Circ. Mat. Palermo (2) Suppl. 16 (1987), 109-111. (1987) Zbl0661.57007MR0946716
  16. LAM K. Y., A formula for the tangent bundle of flag manifolds and related manifolds, Trans. Amer. Math. Soc. 213 (1975), 305-314. (1975) Zbl0312.55020MR0431194
  17. LANG S., Linear Algebra, (3rd ed.), Springer, New York, 1987. (1987) Zbl0618.15001MR0874113
  18. MENDES M. P., An algebraic problem and the software Maple, (In preparation). Zbl1027.13015
  19. MILNOR J. W.-STASHEFF J. D., Characteristic Classes, Ann. of Math. Stud. 76, Princeton Univ. Press-Univ. of Tokyo Press, Princeton, NJ, 1974. (1974) Zbl0298.57008MR0440554
  20. SANKARAN P.-ZVENGROWSKI P., On stable parallelizability of flag manifolds, Pacific J. Math. 122 (1986), 455-458. (1986) Zbl0557.14030MR0831125
  21. STEENROD N., The Topology of Fibre Bundles, Princeton Math. Ser. 14, Princeton Univ. Press, Princeton, NJ, 1951. (1951) Zbl0054.07103MR0039258
  22. STONG R. E., Immersions of real flag manifolds, Proc Amer. Math. Soc 88 (1983), 708-710. (1983) Zbl0532.57020MR0702304
  23. WHITEHEAD G. W., Elements ofmhomotopy theory, Grad. Texts in Math. 61, Springer-Verlag, Berlin-Heidelberg-New York, 1978. (1978) MR0516508
  24. ZVENGROWSKI P., Recent work in the parallelizability of flag manifolds, In: Contemp. Math. 58, Amer. Math. Soc, Providence, RI. 1987, pp. 129-137. (1987) MR0893852

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.