An individual ergodic theorem on the Hilbert space logic

Tatiana Lutterová; Sylvia Pulmannová

Mathematica Slovaca (1985)

  • Volume: 35, Issue: 4, page 361-371
  • ISSN: 0232-0525

How to cite

top

Lutterová, Tatiana, and Pulmannová, Sylvia. "An individual ergodic theorem on the Hilbert space logic." Mathematica Slovaca 35.4 (1985): 361-371. <http://eudml.org/doc/32171>.

@article{Lutterová1985,
author = {Lutterová, Tatiana, Pulmannová, Sylvia},
journal = {Mathematica Slovaca},
keywords = {logic; orthomodular -lattice; state; -homomorphism; commutator; bounded selfadjoint operator; spectral measure},
language = {eng},
number = {4},
pages = {361-371},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {An individual ergodic theorem on the Hilbert space logic},
url = {http://eudml.org/doc/32171},
volume = {35},
year = {1985},
}

TY - JOUR
AU - Lutterová, Tatiana
AU - Pulmannová, Sylvia
TI - An individual ergodic theorem on the Hilbert space logic
JO - Mathematica Slovaca
PY - 1985
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 35
IS - 4
SP - 361
EP - 371
LA - eng
KW - logic; orthomodular -lattice; state; -homomorphism; commutator; bounded selfadjoint operator; spectral measure
UR - http://eudml.org/doc/32171
ER -

References

top
  1. DVUREČENSKIJ A., RIEČAN B., On the individual ergodic theorem on a logic, CMUC 21, 2, 1980, 385-391. (1980) Zbl0443.28014MR0580693
  2. PULMANNOVÁ S., Individual ergodic theorem on a logic, Math. Slovaca 32, 1982, 413-416. (1982) Zbl0503.28005MR0676579
  3. DVUREČENSKIJ A., PULMANNOVÁ S., Connection between joint distributions and compatibility, Rep. Math. Phys. 19, 1984, 349-359. (1984) MR0745430
  4. GUDDER S. P., Joint distributions of observables, J. Math. Mech. 18, 1968, 325-335. (1968) Zbl0241.60092MR0232582
  5. PULMANNOVÁ S., Relative compatibility and joint distributions of obseгvables, Found. Phys. 10, 1980, 641-653. (1980) MR0659345
  6. PULMANNOVÁ S., Compatibility and paгtial compatibility in quantum logics, Ann. Inst. H. Poincaгé XXXIV 1981, 391-403. (1981) MR0625170
  7. HALMOS P. R., Intгoduction to the Theory of Hilbert Space and Spectгal Multiplicity, Chelsea Publishing Co, New York 1957. (1957) 
  8. GLEASON A., Measures on closed subspaces of a Hilbert space, J. Math. Mech. 6, 1957, 885-894. (1957) MR0096113
  9. GUDDER S. P., MULLIKIN H. C, Measuгe theoгetic conveгgences of obseгvables and opeгatoгs, J. Math. Phys. 14, 1973, 234-242. (1973) MR0334747
  10. VARADARAJAN V. S., Geometry of Quantum Theory I, van Nostrand, Princeton N. Y. 1968. (1968) MR0471674
  11. LANCE C., Eгgodic theoгems foг convex sets and opeгator algebгas, Invent. Math. 37, 1976, 201-204. (1976) 
  12. YEADON F. J., Ergodic theoгems for semifinite von Neumann algebras I, J. London Math. Soc. 16, 1977, 326-332. (1977) MR0487482
  13. YEADON F. J., Eгgodic theoгems for semifinite von Neumann algebгas II, Math. Pгoc. Cambг. Phil. Soc. 88, 1980, 135-147. (1980) 
  14. JAJTE R., Non-commutative subadditive eгgodic theorem for semifinite von Neumann algebras, to appear. 
  15. GUDDER S. P., Uniqueness and existence pгopeгties of bounded obseгvables, Pac. J. Math. 15, 1966, 81-93. (1966) MR0201146
  16. DVUREČENSKIJ A., PULMANNOVÁ S., On the sum of obseгvables on a logic, Math. Slovaca З0, 1980, 393-399. (1980) 
  17. ZIERLER N., Axioms for nonrelativistic quantum mechanics, Pac. J. Math. 11, 1961, 1161-1169. (1961) MR0140972

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.