Limit theorems for B -lattice valued random variables

Marta Urbaníková

Mathematica Slovaca (2002)

  • Volume: 52, Issue: 1, page 99-108
  • ISSN: 0139-9918

How to cite

top

Urbaníková, Marta. "Limit theorems for $B$-lattice valued random variables." Mathematica Slovaca 52.1 (2002): 99-108. <http://eudml.org/doc/32218>.

@article{Urbaníková2002,
author = {Urbaníková, Marta},
journal = {Mathematica Slovaca},
keywords = {Banach lattice random variables; stochastically dominated random variables},
language = {eng},
number = {1},
pages = {99-108},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {Limit theorems for $B$-lattice valued random variables},
url = {http://eudml.org/doc/32218},
volume = {52},
year = {2002},
}

TY - JOUR
AU - Urbaníková, Marta
TI - Limit theorems for $B$-lattice valued random variables
JO - Mathematica Slovaca
PY - 2002
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 52
IS - 1
SP - 99
EP - 108
LA - eng
KW - Banach lattice random variables; stochastically dominated random variables
UR - http://eudml.org/doc/32218
ER -

References

top
  1. CHOW Y. S., LAI T. L., Limiting behavior of weighted sums of independent random variables, Ann. Probab. 1 (1973), 810-824. (1973) Zbl0303.60025MR0353426
  2. CRISTESCU R., Sur la représentation intégrale de certains opérateurs linéeires, Rev. Roumaine Math. Pures Appl. 25 (1980), 519-524. (1980) MR0577044
  3. KANTOROVITCH V. L., VULICH B. Z., PINSKER A. G., Funkcional'nyj analiz v poluuporiadochennych prostranstvakh, Gos. izd. techn. lit., Moskva, 1950. (Russian) (1950) 
  4. KELEMENOVÁ M., On the expected value of vector lattice-valued random variables, Acta Math. Univ. Comenian. 56-57 (1988), 153-157. (1988) MR1083018
  5. LOEVE M., Probability Theory, (3rd ed.), Van Nostrand, London, 1963. (1963) Zbl0108.14202MR0203748
  6. PADGETT W. J., TAYLOR R. L., Almost sure convergence of weighted sums of random elements in Banach spaces, In: Probability in Banach Spaces, Oberwolfach, 1975. Lecture Notes in Math. 526, Springer, Berlin, 1976, pp. 187-202. (1975) MR0455065
  7. POTOCKÝ R., A weak law of large numbers for vector lattice-valued random variables, Acta Math. Univ. Comenian. 42-43 (1983), 211-214. (1983) Zbl0538.60012MR0740751
  8. POTOCKÝ R., A strong law of large numbers for identically distributed vector lattice-valued random variables, Math. Slovaca 34 (1984), 67-72. (1984) Zbl0599.60038MR0735937
  9. POTOCKÝ R., On the expected value of vector lattice-valued random variables, Math. Slovaca 36 (1986), 401-405. (1986) Zbl0621.60002MR0871780
  10. SCHAEFER H. H., Banach Lattices and Positive Operators, Grundlehren Math. Wiss. 215, Springer-Verlag, Berlin-Heidelberg-New York, 1974. (1974) Zbl0296.47023MR0423039
  11. SZULGA J., Lattice moments of random vectors, Bull. Polish Acad. Sci. Math. 28 (1980), 87-93. (1980) Zbl0486.60007MR0616206
  12. TAYLOR R. L., Stochastic Convergence of Weighted Sums of Random Elements in Linear Spaces, Lecture Notes in Math. 672, Springer, Berlin, 1978. (1978) Zbl0443.60004MR0513422
  13. WANG X. C., BHASKARA RAO M., A note on convergence of weighted sums of random variables, J. Multivariate Anal. 15, 124-134. Zbl0583.60021MR0755820

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.