On divisibility of the class number h + of the real cyclotomic fields ( ζ p + ζ p - 1 ) by primes q < 10000

Pavel Trojovský

Mathematica Slovaca (2000)

  • Volume: 50, Issue: 5, page 541-555
  • ISSN: 0139-9918

How to cite

top

Trojovský, Pavel. "On divisibility of the class number $h^+$ of the real cyclotomic fields $\mathbb {Q}(\zeta _p+\zeta _p^{-1})$ by primes $q < 10000$." Mathematica Slovaca 50.5 (2000): 541-555. <http://eudml.org/doc/32309>.

@article{Trojovský2000,
author = {Trojovský, Pavel},
journal = {Mathematica Slovaca},
keywords = {class number; cyclotomic field; computation; divisibility},
language = {eng},
number = {5},
pages = {541-555},
publisher = {Mathematical Institute of the Slovak Academy of Sciences},
title = {On divisibility of the class number $h^+$ of the real cyclotomic fields $\mathbb \{Q\}(\zeta _p+\zeta _p^\{-1\})$ by primes $q < 10000$},
url = {http://eudml.org/doc/32309},
volume = {50},
year = {2000},
}

TY - JOUR
AU - Trojovský, Pavel
TI - On divisibility of the class number $h^+$ of the real cyclotomic fields $\mathbb {Q}(\zeta _p+\zeta _p^{-1})$ by primes $q < 10000$
JO - Mathematica Slovaca
PY - 2000
PB - Mathematical Institute of the Slovak Academy of Sciences
VL - 50
IS - 5
SP - 541
EP - 555
LA - eng
KW - class number; cyclotomic field; computation; divisibility
UR - http://eudml.org/doc/32309
ER -

References

top
  1. DAVIS D., Computing the number of totally positive circular units which are squares, J. Number Theory 10 (1978), 1-9. (1978) Zbl0369.12002MR0476695
  2. ESTES D. R., On the parity of the class number of the field of q-th roots of unity, Rocky Mountain J. Math. 19 (1989), 675-681. (1989) Zbl0703.11052MR1043240
  3. JAKUBEC S., On divisibility of class number or real abelian fields of prime conductor, Abh. Math. Sem. Univ. Hamburg 63 (1993), 67-86. (1993) MR1227865
  4. JAKUBEC S., On Divisibility of h+ by the prime 3, Rocky Mountain J. Math. 24 (1994), 1467-1473. (1994) MR1322239
  5. JAKUBEC S., On Divisibility of h+ by the prime 5, Math. Slovaca 44 (1994), 650-700. (1994) MR1338435
  6. JAKUBEC S., Connection between Wiefferich congruence and divisibility of h+, Acta Arith. 71 (1995), 55-64. (1995) MR1338671
  7. JAKUBEC S., Connection between congruences nq-1 = 1 (mod q2) and divisibility of h+, Abh. Math. Sem. Univ. Hamburg 66 (1996), 151-158. (1996) MR1418226
  8. JAKUBEC S., On divisibility of the class number h+ of the real cyclotomic fields of prime degree I, Math. Comp. 67 (1998), 396-398. (1998) MR1443121
  9. JAKUBEC S.-TROJOVSKY P., On divisibility of the class number h+ of the real cyclotomic fields Q(C + Cp1) by primes q <= 5000, Abh. Math. Sem. Univ. Hamburg 67 (1997), 269-280. (1997) MR1481542
  10. METSÄNKYLÄ T., An application of the p-adic class number formula, Manuscripta Math. 93 (1997), 481-498. (1997) Zbl0886.11061MR1465893
  11. VAN DER LINDEN F., Class number computations of real abelian number fields, Math. Comp. 39 (1982), 693-707. (1982) Zbl0505.12010MR0669662
  12. WAGSTAFF S. S., The irregular primes to 125000, Math. Comp. 32 (1978), 583-592. (1978) Zbl0377.10002MR0491465
  13. WASHINGTON L. C., Introduction to Cyclotomic Fields, Grad Texts in Math., Springer-Verlag, New York-Heidelberg-Berlin, 1982. (1982) Zbl0484.12001MR0718674

NotesEmbed ?

top

You must be logged in to post comments.

To embed these notes on your page include the following JavaScript code on your page where you want the notes to appear.

Only the controls for the widget will be shown in your chosen language. Notes will be shown in their authored language.

Tells the widget how many notes to show per page. You can cycle through additional notes using the next and previous controls.

    
                

Note: Best practice suggests putting the JavaScript code just before the closing </body> tag.